3 research outputs found

    Impact of Dietary Administration of Seaweed Polysaccharide on Growth, Microbial Abundance, and Growth and Immune-Related Genes Expression of The Pacific Whiteleg Shrimp (<i>Litopenaeus vannamei</i>)

    No full text
    This work aims to determine the impact of dietary supplementation of polysaccharide, extracted from brown seaweeds Sargassum dentifolium on growth indices, feed utilization, biochemical compositions, microbial abundance, expressions of growth and immunity-related genes, and stress genes of the Pacific Whiteleg shrimp Litopenaeus vannamei. A total of 360 post-larvae of L. vannamei were randomly distributed into a 12-glass aquarium (40 L of each) at a stocking density of 30 shrimp with an initial weight of (0.0017 ± 0.001 g). During the 90-day experiment trial, all shrimp larvae were fed their respective diets at 10% of total body weight, three times a day. Three experimental diets were prepared with different seaweed polysaccharide (SWP) levels. The basal control diet had no polysaccharide level (SWP0), while SWP1, SWP2, and SWP3 contained polysaccharides at concentrations of 1, 2, and 3 g kg−1 diet, respectively. Diets supplemented with polysaccharide levels showed significant improvements in weight gain and survival rate, compared to the control diet. Whole-body biochemical composition and the microbial abundance (the total count of heterotrophic bacteria and Vibrio spp.) of L. vannamei showed significant differences among polysaccharide-treated diets compared to the control. At the end of the feeding experiment, the dietary supplementation of polysaccharide levels enhanced the expression of growth-related genes (Insulin-like growth factors (IGF-I, IGF-II), immune-related genes (β -Glucan-binding protein (β-Bgp), Prophenoloxidase (ProPO), Lysozyme (Lys), and Crustin), and stress genes (Superoxide dismutase (SOD) and Glutathione peroxidase (GPx) in the muscle tissue of L. vannamei. However, the current study concluded that the inclusion rate of 2 g kg–1 of polysaccharide as a dietary additive administration enhanced both weight gain and survival rate of L. vannamei, while the incorporation level of 3 g kg–1 reduces the abundance of pathogenic microbes and enhances the growth-, immunity- and stress-related gene expressions of L. vannamei

    Novel Comprehensive Molecular and Ecological Study Introducing Coastal Mud Shrimp (Solenocera Crassicornis) Recorded at the Gulf of Suez, Egypt

    No full text
    Solenocera crassicornis is a commercially important shrimp of the Solenoceridae family. The current study investigated the morphology, molecular identification, phylogenetic relationships, and population dynamics of S. crassicornis in Egypt. Samples were collected monthly (total, 1722; male = 40.19%, wet weight, 0.89&ndash;10.77 g; female = 59.81%, wet weight, 1.55&ndash;19.24 g) from Al-Attaka commercial catch in the Gulf of Suez in the Red Sea. Two barcode markers, 18S rRNA and cytochrome c oxidase subunit I (COI), were used for molecular identification. COI partial sequences were used to construct the phylogenetic relationships among different species of genus Solenocera and to infer the origin of the studied Solenocera crassicornis. The applied molecular markers successfully identified the studied species to the species level. The genetic distances among S. crassicornis sequences from different countries revealed the Indo-West Pacific origin of S. crassicornis. The relationship between total length (TL) and total weight (TW) was TW = 0.035TL2.275 and r2 = 0.805 for males and TW = 0.007TL3.036 and r2 = 0.883 for females, indicating that females were heavier than males. Despite its social and economic relevance in the area, information on the hatching, larval rearing, and farming of S. crassicornis is scarce and requires future studies under Egyptian conditions

    Effect of Agricultural By-Products as a Carbon Source in a Biofloc-Based System on Growth Performance, Digestive Enzyme Activities, Hepatopancreas Histology, and Gut Bacterial Load of <i>Litopenaeus vannamei</i> Post Larvae

    No full text
    The present study evaluated the influence of different commercial agricultural by-products as a carbon source in a bifloc-based (BFT) culture system on growth performance, whole-body proximate composition, digestive enzyme activities, gut microbial abundance, and hepatopancreas histology of Pacific whiteleg shrimp, Litopenaeus vannamei post larvae (Pls). Three groups were designed, the first group was the control group, where the shrimp was reared in clear water (without carbon source addition and water exchange rate of 100% two times a week) and fed with a commercial diet, in the second and third groups shrimp were reared in BFT systems using two different carbon sources, sugarcane bagasse (SB) and rice bran (RB) without additional feeding or water exchange. The initial stocking density was 16 Pls/liter with an average individual shrimp weight of 0.01 ± 0.002 g and age (PL20). The experiment lasted 90 days. The water quality parameters were maintained at optimum levels during the experiment. The final body weight and specific growth rate of shrimp were significantly (p ≤ 0.01) higher in the control group than those reared in both SB and RB-based BFT. Meanwhile, the survival rate was significantly (p p p < 0.05) higher in BFT groups. Furthermore, the hepatopancreas histological status of shrimp reared in the SB-based BFT group showed an increase in the hepatopancreas tubules in the distal and B-cell zones (blister-like cells) by 16.83 and 34.89%, respectively, compared to the control. This study revealed that BFT could be used as a natural feed without artificial diets, which influenced the gut microbiota of shrimp, increased digestive enzyme activities, as well as improved the histological structure of the hepatopancreas of shrimp. However, the success of this conditions under high stocking density still needs more investigation
    corecore