2 research outputs found

    Energy storage in aluminum nanopowder in stress-strain state of crystal lattice

    No full text
    When transforming metals into nanodispersed state nanopowders acquire new properties, including the storage of energy by nonopowders. The increasing interest to aluminum powders and nanopowders is caused by their application as a high-energy additive in rocket fuels and pyrotechnic mixtures. Thus, the investigation of energy storage in Al nanopowder is of great importance. Besides, it is not easy to determine the amount of stored energy in Al nanopowder. The authors have used the aluminum nanopowder obtained by electrical explosion of aluminum wire in argon, using UDP-4D installation developed in Tomsk Polytechnic University. The main aim of the study is to asses experimentally the value of energy, stored in the form of stress-strain state of the crystal lattice of Al nanopowder and to compare the obtained value to a general value of stored energy. The methods used in the study are the X-Ray diffraction, differential thermal analysis. It was ascertained that the crystal lattice is in stressed state in air-passivated electroexplosive aluminum nanopowder. The modified Lorenz function was used as a profile function; crystalline microdistortions, calculated by the approximation technique, amount to 8,66 x 10[-4]. The value of energy, stored in the stress-strain state of the crystal lattice of electroexplosive aluminum nanopowder, is 0,385 J/g, while the value of stored energy, determined by means of differential thermal analysis, is 348 J/g. Thus, the most feasible mechanism of storing significant energy in aluminum nanopowder is the formation of more energy-saturated structures in solid (the formation of a double electric layer with pseudocapacity during passivation)

    Energy storage in aluminum nanopowder in stress-strain state of crystal lattice

    No full text
    ΠŸΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Π΅ ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² Π² нанодиспСрсноС состояниС Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ появлСниС Π½ΠΎΠ²Ρ‹Ρ… свойств Π½Π°Π½ΠΎΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ², Π² Ρ‚ΠΎΠΌ числС запасаниС Π½Π°Π½ΠΎΠΏΠΎΡ€ΠΎΡˆΠΊΠ°ΠΌΠΈ энСргии. Π’ΠΎΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‰ΠΈΠΉ интСрСс ΠΊ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ°ΠΌ ΠΈ Π½Π°Π½ΠΎΠΏΠΎΡ€ΠΎΡˆΠΊΠ°ΠΌ алюминия обусловлСн ΠΈΡ… использованиСм Π² качСствС высокоэнСргСтичСских Π΄ΠΎΠ±Π°Π²ΠΎΠΊ Π² Ρ€Π°ΠΊΠ΅Ρ‚Π½Ρ‹Π΅ Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° ΠΈ пиротСхничСскиС смСси. ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ исслСдования связана с Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ установлСния ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² запасания энСргии Π½Π°Π½ΠΎΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠΌ алюминия. ВмСстС с Ρ‚Π΅ΠΌ сущСствСнной ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΎΠΉ являСтся ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ запасСнной энСргии Π² Π½Π°Π½ΠΎΠΏΠΎΡ€ΠΎΡˆΠΊΠ΅ Al. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ использовали пассивированный ΠΌΠ°Π»Ρ‹ΠΌΠΈ Π΄ΠΎΠ±Π°Π²ΠΊΠ°ΠΌΠΈ Π²ΠΎΠ·Π΄ΡƒΡ…Π° Π½Π°Π½ΠΎΠΏΠΎΡ€ΠΎΡˆΠΎΠΊ алюминия, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктричСского Π²Π·Ρ€Ρ‹Π²Π° Π°Π»ΡŽΠΌΠΈΠ½ΠΈΠ΅Π²Ρ‹ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² Π² срСдС Π°Ρ€Π³ΠΎΠ½Π° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ установки Π£Π”ΠŸ-4Π“, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ Π² Вомском политСхничСском унивСрситСтС. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹: ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ энСргии, запасаСмой Π² Ρ„ΠΎΡ€ΠΌΠ΅ напряТСнно-Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ состояния кристалличСской Ρ€Π΅ΡˆΡ‘Ρ‚ΠΊΠΈ Π½Π°Π½ΠΎΠΏΠΎΡ€ΠΎΡˆΠΊΠ° алюминия ΠΈ ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ с ΠΎΠ±Ρ‰Π΅ΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ запасСнной энСргии. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ исслСдования: Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ рСнтгСноструктурныС исслСдования, Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ тСрмичСский Π°Π½Π°Π»ΠΈΠ·. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. УстановлСно, Ρ‡Ρ‚ΠΎ Π² пассивированном Π²ΠΎΠ·Π΄ΡƒΡ…ΠΎΠΌ элСктровзрывном Π½Π°Π½ΠΎΠΏΠΎΡ€ΠΎΡˆΠΊΠ΅ алюминия кристалличСская Ρ€Π΅ΡˆΡ‘Ρ‚ΠΊΠ° находится Π² напряТСнном состоянии. ΠœΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Π°Ρ функция Π›ΠΎΡ€Π΅Π½Ρ†Π° Π±Ρ‹Π»Π° Π²Ρ‹Π±Ρ€Π°Π½Π° Π² качСствС Π°ΠΏΠΏΡ€ΠΎΠΊΡΠΈΠΌΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ, микроискаТСния кристаллитов, рассчитанныС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ аппроксимаций, ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ 8,66 Ρ… 10[-4 ]. Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° энСргии, запасаСмой Π² напряТСнно-Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ состоянии кристалличСской Ρ€Π΅ΡˆΡ‘Ρ‚ΠΊΠΈ элСктровзрывного Π½Π°Π½ΠΎΠΏΠΎΡ€ΠΎΡˆΠΊΠ° алюминия, - 0,385 Π”ΠΆ/Π³, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ опрСдСлСнная с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ тСрмичСского Π°Π½Π°Π»ΠΈΠ·Π° запасСнная энСргия составляСт 348 Π”ΠΆ/Π³. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, вСроятным ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠΌ запасания Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ энСргии Π½Π°Π½ΠΎΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠΌ алюминия являСтся Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π±ΠΎΠ»Π΅Π΅ энСргонасыщСнных структур Π² Ρ‚Π²Π΅Ρ€Π΄ΠΎΠΌ Ρ‚Π΅Π»Π΅ (Π² Ρ‚ΠΎΠΌ числС, Π·Π° счёт формирования Π½Π° повСрхности Π½Π°Π½ΠΎΠΏΠΎΡ€ΠΎΡˆΠΊΠ° алюминия ΠΏΡ€ΠΈ пассивировании Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ элСктричСского слоя, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰Π΅Π³ΠΎ ΠΏΡΠ΅Π²Π΄ΠΎΠ΅ΠΌΠΊΠΎΡΡ‚ΡŒΡŽ).When transforming metals into nanodispersed state nanopowders acquire new properties, including the storage of energy by nonopowders. The increasing interest to aluminum powders and nanopowders is caused by their application as a high-energy additive in rocket fuels and pyrotechnic mixtures. Thus, the investigation of energy storage in Al nanopowder is of great importance. Besides, it is not easy to determine the amount of stored energy in Al nanopowder. The authors have used the aluminum nanopowder obtained by electrical explosion of aluminum wire in argon, using UDP-4D installation developed in Tomsk Polytechnic University. The main aim of the study is to asses experimentally the value of energy, stored in the form of stress-strain state of the crystal lattice of Al nanopowder and to compare the obtained value to a general value of stored energy. The methods used in the study are the X-Ray diffraction, differential thermal analysis. It was ascertained that the crystal lattice is in stressed state in air-passivated electroexplosive aluminum nanopowder. The modified Lorenz function was used as a profile function; crystalline microdistortions, calculated by the approximation technique, amount to 8,66 x 10[-4]. The value of energy, stored in the stress-strain state of the crystal lattice of electroexplosive aluminum nanopowder, is 0,385 J/g, while the value of stored energy, determined by means of differential thermal analysis, is 348 J/g. Thus, the most feasible mechanism of storing significant energy in aluminum nanopowder is the formation of more energy-saturated structures in solid (the formation of a double electric layer with pseudocapacity during passivation)
    corecore