841 research outputs found
Photon bremsstrahlung and diffusive broadening of a hard jet
The photon bremsstrahlung rate from a quark jet produced in deep-inelastic
scattering (DIS) off a large nucleus is studied in the collinear limit. The
leading medium-enhanced higher twist corrections which describe the multiple
scattering of the jet in the nucleus are re-summed to all orders of twist. The
propagation of the jet in the absence of further radiative energy loss is shown
to be governed by a transverse momentum diffusion equation. We compute the
final photon spectrum in the limit of soft photons, taking into account the
leading and next-to-leading terms in the photon momentum fraction y. In this
limit, the photon spectrum in a physical gauge is shown to arise from two
interfering sources: one where the initial hard scattering produces an
off-shell quark which immediately radiates the photon and then undergoes
subsequent soft re-scattering; alternatively the quark is produced on-shell and
propagates through the medium until it is driven off-shell by re-scattering and
radiates the photon. Our result has a simple formal structure as a product of
the photon splitting function, the quark transverse momentum distribution
coming from a diffusion equation and a dimensionless factor which encodes the
effect of the interferences encountered by the propagating quark over the
length of the medium. The destructive nature of such interferences in the small
y limit are responsible for the origin of the Landau-Pomeranchuck-Migdal (LPM)
effect. Along the way we also discuss possible implications for quark jets in
hot nuclear matter.Comment: 24 pages, 3 figures, Revtex
Hard collinear gluon radiation and multiple scattering in a medium
The energy loss of hard jets produced in the Deep-Inelastic scattering (DIS)
off a large nucleus is considered in the collinear limit. In particular, the
single gluon emission cross section due to multiple scattering in the medium is
calculated. Calculations are carried out in the higher-twist scheme, which is
extended to include contributions from multiple transverse scatterings on both
the produced quark and the radiated gluon. The leading length enhanced parts of
these power suppressed contributions are resummed. Various interferences
between such diagrams lead to the Landau-Pomeranchuk-Migdal (LPM) effect. We
resum the corrections from an arbitrary number of scatterings and isolate the
leading contributions which are suppressed by one extra power of the hard scale
. All powers of the emitted gluon forward momentum fraction are
retained. We compare our results with the previous calculation of single
scattering per emission in the higher-twist scheme as well as with multiple
scattering resummations in other schemes. It is found that the leading
() contribution to the double differential gluon production cross
section, in this approach, is equivalent to that obtained from the single
scattering calculation once the transverse momentum of the final quark is
integrated out. We comment on the generalization of this formalism to
Monte-Carlo routines.Comment: 30 pages, 7 figures, revtex4, typos correcte
Weak Turbulent Kolmogorov Spectrum for Surface Gravity Waves
We study the long-time evolution of gravity waves on deep water exited by the
stochastic external force concentrated in moderately small wave numbers. We
numerically implement the primitive Euler equations for the potential flow of
an ideal fluid with free surface written in canonical variables, using
expansion of the Hamiltonian in powers of nonlinearity of up to fourth order
terms.
We show that due to nonlinear interaction processes a stationary energy
spectrum close to is formed. The observed spectrum can be
interpreted as a weak-turbulent Kolmogorov spectrum for a direct cascade of
energy.Comment: 4 pages, 5 figure
- …