42 research outputs found
Modification of the low-latitude ionosphere before the 26 December 2004 Indonesian earthquake
International audienceThis paper investigates the features of pre-earthquake ionospheric anomalies in the total electron content (TEC) data obtained on the basis of regular GPS observations from the IGS network. For the analysis of the ionospheric effects of the 26 December 2004 Indonesian earthquake, global TEC maps were used. The possible influence of the earthquake preparation processes on the main low-latitude ionosphere peculiarity ? the equatorial anomaly ? is discussed. Analysis of the TEC maps has shown that modification of the equatorial anomaly occurred a few days before the earthquake. For 2 days prior to the event, a positive effect was observed in the daytime amplification of the equatorial anomaly. Maximal enhancement in the crests reached 20 TECU (50?60%) relative to the non-disturbed state. In previous days, during the evening and night hours (local time), a specific transformation of the TEC distribution had taken place. This modification took the shape of a double-crest structure with a trough near the epicenter, though usually in this time the restored normal latitudinal distribution with a maximum near the magnetic equator is observed. It is assumed that anomalous electric field generated in the earthquake preparation zone could cause a near-natural "fountain-effect" phenomenon and might be a possible cause of the observed ionospheric anomaly
Comparative Study of foF2 Measurements with IRI-2007 Model Predictions During Extended Solar Minimum
The unusually deep and extended solar minimum of cycle 2324 made it very difficult to predict the solar indices 1 or 2 years into the future. Most of the predictions were proven wrong by the actual observed indices. IRI gets its solar, magnetic, and ionospheric indices from an indices file that is updated twice a year. In recent years, due to the unusual solar minimum, predictions had to be corrected downward with every new indices update. In this paper we analyse how much the uncertainties in the predictability of solar activity indices affect the IRI outcome and how the IRI values calculated with predicted and observed indices compared to the actual measurements.Monthly median values of F2 layer critical frequency (foF2) derived from the ionosonde measurements at the mid-latitude ionospheric station Juliusruh were compared with the International Reference Ionosphere (IRI-2007) model predictions. The analysis found that IRIprovides reliable results that compare well with actual measurements, when the definite (observed and adjusted) indices of solar activityare used, while IRI values based on earlier predictions of these indices noticeably overestimated the measurements during the solar minimum.One of the principal objectives of this paper is to direct attention of IRI users to update their solar activity indices files regularly.Use of an older index file can lead to serious IRI overestimations of F-region electron density during the recent extended solar minimum
Dynamic Algorithms of Multilayered Neural Networks Training in Generalized Training Plant
The new modifications of multilayered neurak networks training algorithms in a generalized training plant structure are introduced. The first modification for algorithm "on error backpropagation algorithm through time" is introduced and its sufficient conditions of a training procedure stability are obtained. Other modification for speed gradient algorithm of an error backpropagation is obtained, where measurement state vector in a training procedure instead of a parametrical model of plant is used
Natural Phaeosphaeride A Derivatives Overcome Drug Resistance of Tumor Cells and Modulate Signaling Pathways
n the present study, natural phaeosphaeride A (PPA) derivatives are synthesized. Anti-tumor studies are carried out on the PC3, K562, HCT-116, THP-1, MCF-7, A549, NCI-H929, Jurkat, and RPMI8226 tumor cell lines, and on the human embryonic kidney (HEK293) cell line. All the compounds synthesized turned out to have better efficacy than PPA towards the tumor cell lines listed. Among them, three compounds exhibited an ability to overcome the drug resistance of tumor cells associated with the overexpression of the P-glycoprotein by modulating the work of this transporter. Luminex xMAP technology was used to assess the effect of five synthesized compounds on the activation of intracellular kinase cascades in A431 cells. MILLIPLEX MAP Multi-Pathway Magnetic Bead 9-Plex was used, which allowed for the simultaneous detection of the following nine phosphorylated protein markers of the main intracellular signaling pathways: a universal transcription factor that controls the expression of immune-response genes, apoptosis and cell cycle NFκB (pS536); cAMP-dependent transcription factor (CREB (pS133); mitogen-activated kinase p38 (pT180/pY182); stress-activated protein kinase JNK (pT183/pY185); ribosomal SK; transcription factors STAT3 (pS727) and STAT5A/B (pY694/699); protein kinase B (Akt) (pS473); and kinase regulated by extracellular signals ERK1/2 (pT185/pY187). The effect of various concentrations of PPA derivatives on the cell culture was studied using xCelligence RTCA equipment. The compounds were found to modulate JNK, ERK1/2, and p38 signaling pathways. The set of activated kinase cascades suggests that oxidative stress is the main probable mechanism of the toxic action of PPA derivatives
A combined estimator using TEC and b-value for large earthquake prediction
[EN] Ionospheric anomalies have been shown to occur a few days before several large earthquakes. The published works normally address examples limited in time (a single event or few of them) or space (a particular geographic area), so that a clear method based on these anomalies which consistently yields the place and magnitude of the forthcoming earthquake, anytime and anywhere on earth, has not been presented so far. The current research is aimed at prediction of large earthquakes, that is with magnitude M-w 7 or higher. It uses as data bank all significant earthquakes occurred worldwide in the period from January 1, 2011 to December 31, 2018. The first purpose of the research is to improve the use of ionospheric anomalies in the form of TEC grids for earthquake prediction. A space-time TEC variation estimator especially designed for earthquake prediction will show the advantages with respect to the use of simple TEC values. Further, taking advantage of the well-known predictive abilities of the Gutenberg-Richter law's b-value, a combined estimator based on both TEC anomalies and b-values will be designed and shown to improve prediction performance even more.Baselga Moreno, S. (2020). A combined estimator using TEC and b-value for large earthquake prediction. Acta Geodaetica et Geophysica Hungarica. 55(1):63-82. https://doi.org/10.1007/s40328-019-00281-5S6382551Abordán A, Szabó NP (2018) Metropolis algorithm driven factor analysis for lithological characterization of shallow marine sediments. Acta Geod Geophys 53:189–199. https://doi.org/10.1007/s40328-017-0210-zAkhoondzadeh M, Saradjian MR (2011) TEC variations analysis concerning Haiti (January 12, 2010) and Samoa (September 29, 2009) earthquakes. Adv Space Res 47(1):94–104. https://doi.org/10.1016/j.asr.2010.07.024Asencio-Cortés G, Morales-Esteban A, Shang X, Martínez-Álvarez F (2018) Earthquake prediction in California using regression algorithms and cloud-based big data infrastructure. Comput Geosci 115:198–210. https://doi.org/10.1016/j.cageo.2017.10.011Baselga S (2018) Fibonacci lattices for the evaluation and optimization of map projections. Comput Geosci 117:1–8. https://doi.org/10.1016/j.cageo.2018.04.012Baselga S (2019) TestGrids: evaluating and optimizing map projections. J Surv Eng 144(3):04019004Berényi KA, Barta V, Kis Á (2018) Midlatitude ionospheric F2-layer response to eruptive solar events-caused geomagnetic disturbances over Hungary during the maximum of the solar cycle 24: a case study. Adv Space Res 61(5):1230–1243. https://doi.org/10.1016/j.asr.2017.12.021Biswas A, Sharma SP (2017) Interpretation of self-potential anomaly over 2-D inclined thick sheet structures and analysis of uncertainty using very fast simulated annealing global optimization. Acta Geod Geophys 52:439–455. https://doi.org/10.1007/s40328-016-0176-2Borgohain JM, Borah K, Biswas R, Bora DK (2018) Seismic b-value anomalies prior to the 3rd January 2016, Mw = 6.7 Manipur earthquake of northeast India. J Asian Earth Sci 154:42–48. https://doi.org/10.1016/j.jseaes.2017.12.013Buonsanto M (1999) Ionospheric storms—a review. Space Sci Rev 88:563–601. https://doi.org/10.1023/A:1005107532631Buskirk RE, Frohlich CL, Latham GV (1981) Unusual animal behavior before earthquakes: a review of possible sensory mechanisms. Rev Geophys 19:247–270. https://doi.org/10.1029/RG019i002p00247Dobrovolsky IR, Zubkov SI, Myachkin VI (1979) Estimation of the size of earthquake preparation zones. Pure appl Geophys 117:1025–1044. https://doi.org/10.1007/BF00876083Dogan U, Ergintav S, Skone S, Arslan N, Oz D (2011) Monitoring of the ionosphere TEC variations during the 17th August 1999 Izmit earthquake using GPS data. Earth Planets Space 63(12):1183–1192. https://doi.org/10.5047/eps.2011.07.020Florido E, Martínez-Álvarez F, Morales-Esteban A, Reyes J, Aznarte-Mellado JL (2015) Detecting precursory patterns to enhance earthquake prediction in Chile. Comput Geosci 76:112–120. https://doi.org/10.1016/j.cageo.2014.12.002Florido E, Asencio-Cortés G, Aznarte JL, Rubio-Escudero C, Martínez-Álvarez F (2018) A novel tree-based algorithm to discover seismic patterns in earthquake catalogs. Comput Geosci 115:96–104. https://doi.org/10.1016/j.cageo.2018.03.005Freund FT, Kulahci IG, Cyr G, Ling J, Winnick M, Tregloan-Reed J, Freund MM (2009) Air ionization at rock surfaces and pre-earthquake signals. J Atmos Sol Terr Phys 71(17–18):1824–1834. https://doi.org/10.1016/j.jastp.2009.07.013Gopinath S, Prince PR (2018) Nonextensive and distance-based entropy analysis on the influence of sunspot variability in magnetospheric dynamics. Acta Geod Geophys 53:639–659. https://doi.org/10.1007/s40328-018-0235-yGrant RA, Halliday T (2010) Predicting the unpredictable; evidence of pre-seismic anticipatory behaviour in the common toad. J Zool 281:263–271. https://doi.org/10.1111/j.1469-7998.2010.00700.xGrant RA, Halliday T, Balderer WP, Leuenberger F, Newcomer M, Cyr G, Freund FT (2011) Ground water chemistry changes before major earthquakes and possible effects on animals. Int J Environ Res Public Health 8:1936–1956. https://doi.org/10.3390/ijerph8061936Guo J, Yu H, Li W, Liu X, Kong Q, Zhao C (2017) Total electron content anomalies before Mw 6.0 + earthquakes in the seismic zone of southwest China between 2001 and 2013. J Test Eval 45(1):131–139. https://doi.org/10.1520/JTE20160032International GNSS Service (2019) IGS products. https://www.igs.org/products. Accessed 5 May 2019Kane RP (2005) Ionospheric foF2 anomalies during some intense geomagnetic storms. Ann Geophys 23:2487–2499. https://doi.org/10.5194/angeo-23-2487-2005Kulhanek O, Persson L, Nuannin P (2018) Variations of b-values preceding large earthquakes in the shallow subduction zones of Cocos and Nazca plates. J South Am Earth Sci 82:207–214. https://doi.org/10.1016/j.jsames.2018.01.005Lin JW (2010) Ionospheric total electron content (TEC) anomalies associated with earthquakes through Karhunen–Loéve Transform (KLT). Terr Atmos Ocean Sci 21(2):253–265. https://doi.org/10.3319/TAO.2009.06.11.01(T)Lin JW (2011) Latitude-time total electron content anomalies as precursors to Japan’s large earthquakes associated with principal component analysis. Int J Geophys. https://doi.org/10.1155/2011/763527Liu JY, Chen YI, Chuo YJ, Chen CS (2006) A statistical investigation of preearthquake ionospheric anomaly. J Geophys Res 111:A05304. https://doi.org/10.1029/2005JA011333Liu JY, Chen YI, Chen CH, Liu CY, Chen CY, Nishihashi M, Li JZ, Xia YQ, Oyama KI, Hattori K, Lin CH (2009) Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7.9 Wenchuan earthquake. J Geophys Res 114:A04320. https://doi.org/10.1029/2008JA013698Nuannin P, Kulhanek O, Persson L (2005) Spatial and temporal b value anomalies preceding the devastating off coast of NW Sumatra earthquake of December 26, 2004. Geophys Res Lett 32:L11307. https://doi.org/10.1029/2005GL022679Pardalos PM, Romeijn HE (eds) (2002) Handbook of global optimization, vols. 1 & 2. Kluwer, DordretchPaul B, De BK, Guha A (2018) Latitudinal variation of F-region ionospheric response during three strongest geomagnetic storms of 2015. Acta Geod Geophys 53:579–606. https://doi.org/10.1007/s40328-018-0221-4Pulinets S, Boyarchuk K (2004) Ionospheric precursors of earthquakes. Springer, BerlinPulinets SA, Legen’ka AD, Gaivoronskaya TV, Depuev VKh (2003) Main phenomenological features of ionospheric precursors of strong earthquakes. J Atmos Sol Terr Phys 65:1337–1347. https://doi.org/10.1016/j.jastp.2003.07.011Reyes J, Morales-Esteban A, Martínez-Álvarez F (2013) Neural networks to predict earthquakes in Chile. Appl Soft Comput 13:1314–1328. https://doi.org/10.1016/j.asoc.2012.10.014Şentürk E, Çepni MS (2018a) A statistical analysis of seismo ionospheric TEC anomalies before 63 Mw ≥ 5.0 earthquakes in Turkey during 2003–2016. Acta Geophys 66:1495–1507. https://doi.org/10.1007/s11600-018-0214-2Şentürk E, Çepni MS (2018b) Ionospheric temporal variations over the region of Turkey: a study based on long-time TEC observations. Acta Geod Geophys 53:623–637. https://doi.org/10.1007/s40328-018-0233-0Şentürk E, Çepni MS (2019) Performance of different weighting and surface fitting techniques on station-wise TEC calculation and modified sine weighting supported by the sun effect. J Spat Sci 64(2):209–220. https://doi.org/10.1080/14498596.2017.1417169Şentürk E, Livaoğlu H, Çepni MS (2019) A comprehensive analysis of ionospheric anomalies before the mw 7.1 Van earthquake on 23 October 2011. J Navig 72(3):702–720. https://doi.org/10.1017/S0373463318000826Shiuly A, Roy N (2018) A generalized VS–N correlation using various regression analysis and genetic algorithm. Acta Geod Geophys 53:479–502. https://doi.org/10.1007/s40328-018-0220-5U.S. Geological Survey (2019) Earthquake catalog. https://earthquake.usgs.gov/earthquakes/search/. Accessed 5 May 2019Warwick JW, Stoker C, Meyer TR (1982) Radio emission associated with rock fracture: possible application to the Great Chilean Earthquake of May 22, 1960. J Geophys Res Solid Earth 87:2851–2859. https://doi.org/10.1029/JB087iB04p02851Yao Y, Chen P, Wu H, Zhang S, Peng W (2012) Analysis of ionospheric anomalies before the 2011 M w 9.0 Japan earthquake. Chin Sci Bull 57(5):500–510. https://doi.org/10.1007/s11434-011-4851-yZakharenkova IE, Shagimuratov II, Krankowski A (2007a) Features of the ionosphere behavior before the Kythira 2006 earthquake. Acta Geophys 55(4):524–534. https://doi.org/10.2478/s11600-007-0031-5Zakharenkova IE, Shagimuratov II, Krankowski A, Lagovsky AF (2007b) Precursory phenomena observed in the total electron content measurements before great Hokkaido earthquake of September 25, 2003 (M = 8.3). Stud Geophys Geod 51(2):267–278. https://doi.org/10.1007/s11200-007-0014-
Spatial and Temporal Evolution of Different‐Scale Ionospheric Irregularities in Central and East Siberia During the 27–28 May 2017 Geomagnetic Storm
We present a multi-instrumental study of ionospheric irregularities of different scales (from tens of centimeters to few kilometers) observed over the Central and East Siberia, Russia, during a moderate-to-strong geomagnetic storm on 27–28 May 2017. From high-frequency (HF) and ultrahigh-frequency (UHF) radar data, we observed an intense auroral backscatter developed right after the initial phase of the geomagnetic storm. Additionally, we examined variations of Global Positioning System (GPS)-based ROT (rate of TEC changes, where TEC is total electron content) for available GPS receivers in the region. Ionosondes, HF, and UHF radar data exhibited a presence of intense multi-scale ionospheric irregularities. We revealed a correlation between different-scale Auroral/Farley-Buneman ionospheric irregularities of the E layer during the geomagnetic storm. The combined analysis showed that an area of intense irregularities is well connected and located slightly equatorward to field-aligned currents (FACs) and auroral oval at different stages of the geomagnetic storm. An increase and equatorward displacement of Region 1 (R1)/Region 2 (R2) FACs leads to appearance and equatorward expansion of ionospheric irregularities. During downward (upward) R1 FAC and upward (downward) R2 FAC, the eastward and upward (westward and downward) E × B drift of ionospheric irregularities occurred. Simultaneous disappearance of UHF/HF auroral backscatter and GPS ROT decrease occurred during a prolonged near noon reversal of R1 and R2 FAC directions that accompanied by R1/R2 FAC degradation and disappearance of high-energy auroral precipitation