55 research outputs found
Extended DDoS Confirmation & Attack Packet Dropping Algorithm in On-Demand Grid Computing Platform
DDoS attacks are thrown through carriage of a large amount of packets to an objective machine, using instantaneous teamwork of numerous hosts which are scattered throughout the Grid computing environment. Nowadays DDoS attacks on the Internet in general and particularly in Grid computing environment has become a visible issue in computer networks and communications. DDoS attacks are cool to provoke but their uncovering is a very problematic and grim task and therefore, an eye-catching weapon for hackers. DDoS torrents do not have familiar characteristics; therefore currently existing IDS cannot identify and discover these attacks perfectly. Correspondingly, there implementation is a puzzling task. In practice, Gossip based DDoS attacks detection apparatus are used to detect such types of attacks in computer networks, by exchanging stream of traffic over line. Gossip based techniques results in network overcrowding and have upstairs of superfluous and additional packets. Keeping the above drawbacks in mind, we have proposed a DDoS detection and prevention mechanism in [1], that has the attractiveness of being easy to adapt and more trustworthy than existing counterparts. We have introduced entropy based detection mechanism for DDoS attack detection. Our proposed solution has no overhead of extra packets, hence resulting in good QoS. Once DDoS is detected, any prevention technique can be used to prevent DDoS in Grid environment. In this paper we are going to extend our idea. A confirmation mechanism is introduced herewith
Technology-assisted decision support system for efficient water utilization : a real-time testbed for irrigation using wireless sensor networks
Scientific organizations and researchers are eager to apply recent technological advancements, such as sensors and actuators, in different application areas, including environmental monitoring, creation of intelligent buildings, and precision agriculture. Technology-assisted irrigation for agriculture is a major research innovation which eases the work of farmers and prevents water wastage. Wireless sensor networks (WSNs) are used as sensor nodes that directly interact with the physical environment and provide real-time data that are useful in identifying regions in need, particularly in agricultural fields. This paper presents an efficient methodology that employs WSN as a data collection tool and a decision support system (DSS). The proposed DSS can assist farmers in their manual irrigation procedures or automate irrigation activities. Water-deficient sites in both scenarios are identified by using soil moisture and environmental data sensors. However, the proposed system's accuracy is directly proportional to the accuracy of dynamic data generated by the deployed WSN. A simplified outlier-detection algorithm is thus presented and integrated with the proposed DSS to fine-tune the collected data prior to processing. The complexity of the algorithm is O(1) for dynamic datasets generated by sensor nodes and O(n) for static datasets. Different issues in technology-assisted irrigation management and their solutions are also addressed. © 2013 IEEE
Smart sensing-enabled decision support system for water scheduling in orange orchard
The scarcity of water resources throughout the world demands its optimum utilization in various sectors. Smart Sensing-enabled irrigation management systems are the ideal solutions to ensure the optimum utilization of water resources in the agriculture sector. This paper presents a wireless sensor network-enabled Decision Support System (DSS) for developing a need-based irrigation schedule for the orange orchard. For efficient monitoring of various in-field parameters, our proposed approach uses the latest smart sensing technology such as soil moisture, leaf-wetness, temperature and humidity. The proposed smart sensing-enabled test-bed was deployed in the orange orchard of our institute for approximately one year and successfully adjusted its irrigation schedule according to the needs and demands of the plants. Moreover, a modified Longest Common SubSequence (LCSS) mechanism is integrated with the proposed DSS for distinguishing multi-valued noise from the abrupt changing scenarios. To resolve the concurrent communication problem of two or more wasp-mote sensor boards with a common receiver, an enhanced RTS/CTS handshake mechanism is presented. Our proposed DSS compares the most recently refined data with pre-defined threshold values for efficient water management in the orchard. Irrigation activity is scheduled if water deficit criterion is met and the farmer is informed accordingly. Both the experimental and simulation results show that the proposed scheme performs better in comparison to the existing schemes. © 2001-2012 IEEE
epcAware: a game-based, energy, performance and cost efficient resource management technique for multi-access edge computing
The Internet of Things (IoT) is producing an extraordinary volume of data daily, and it is possible that the data may become useless while on its way to the cloud for analysis, due to longer distances and delays. Fog/edge computing is a new model for analyzing and acting on time-sensitive data (real-time applications) at the network edge, adjacent to where it is produced. The model sends only selected data to the cloud for analysis and long-term storage. Furthermore, cloud services provided by large companies such as Google, can also be localized to minimize the response time and increase service agility. This could be accomplished through deploying small-scale datacenters (reffered to by name as cloudlets) where essential, closer to customers (IoT devices) and connected to a centrealised cloud through networks - which form a multi-access edge cloud (MEC). The MEC setup involves three different parties, i.e. service providers (IaaS), application providers (SaaS), network providers (NaaS); which might have different goals, therefore, making resource management a defficult job. In the literature, various resource management techniques have been suggested in the context of what kind of services should they host and how the available resources should be allocated to customers’ applications, particularly, if mobility is involved. However, the existing literature considers the resource management problem with respect to a single party. In this paper, we assume resource management with respect to all three parties i.e. IaaS, SaaS, NaaS; and suggest a game theoritic resource management technique that minimises infrastructure energy consumption and costs while ensuring applications performance. Our empirical evaluation, using real workload traces from Google’s cluster, suggests that our approach could reduce up to 11.95% energy consumption, and approximately 17.86% user costs with negligible loss in performance. Moreover, IaaS can reduce up to 20.27% energy bills and NaaS can increase their costs savings up to 18.52% as compared to other methods
Secure and efficient data storage operations by using intelligent classification technique and RSA algorithm in IoT-based cloud computing
In mobile cloud services, smartphones may depend on IoT-based cloud infrastructure and information storage tools to conduct technical errands, such as quest, information processing, and combined networks. In addition to traditional finding institutions, the smart IoT-cloud often upgrades the normal impromptu structure by treating mobile devices as corporate hubs, e.g., by identifying institutions. This has many benefits from the start, with several significant problems to be overcome in order to enhance the unwavering consistency of the cloud environment while Internet of things connects and improves decision support system of the entire network. In fact, similar issues apply to monitor loading, resistance, and other security risks in the cloud state. Right now, we are looking at changed arrangement procedures in MATLAB utilizing cardiovascular failure information and afterward protecting that information with the assistance of RSA calculation in mobile cloud. The calculations tried are SVM, RF, DT, NB, and KNN. In the outcome, the order strategies that have the best exactness result to test respiratory failure information will be recommended for use for enormous scope information. Instead, the collected data will be transferred to the mobile cloud for preservation using the RSA encryption algorithm
CoLocateMe: Aggregation-based, energy, performance and cost aware VM placement and consolidation in heterogeneous IaaS clouds
In many production clouds, with the notable exception of Google, aggregation-based VM placement policies are used to provision datacenter resources energy and performance efficiently. However, if VMs with similar workloads are placed onto the same machines, they might suffer from contention, particularly, if they are competing for similar resources. High levels of resource contention may degrade VMs performance, and, therefore, could potentially increase users’ costs and infrastructure's energy consumption. Furthermore, segregation-based methods result in stranded resources and, therefore, less economics. The recent industrial interest in segregating workloads opens new directions for research. In this article, we demonstrate how aggregation and segregation-based VM placement policies lead to variabilities in energy efficiency, workload performance, and users’ costs. We, then, propose various approaches to aggregation-based placement and migration. We investigate through a number of experiments, using Microsoft Azure and Google's workload traces for more than twelve thousand hosts and a million VMs, the impact of placement decisions on energy, performance, and costs. Our extensive simulations and empirical evaluation demonstrate that, for certain workloads, aggregation-based allocation and consolidation is ∼9.61% more energy and ∼20.0% more performance efficient than segregation-based policies. Moreover, various aggregation metrics, such as runtimes and workload types, offer variations in energy consumption and performance, therefore, users’ costs
- …