10 research outputs found
Préparation en couches minces des polymères conducteurs et leurs composites : application à la conversion d'énergie
Thermoelectric materials have attracted much attention in recent years, owing to their reversible properties of converting thermal energy into electricity.Even though, the inorganic materials, mainly based on bismuth telluride (Bi2Te3) records the best yields, they are toxics and remains expensive. Conductive polymers constitute a promising alternative materials for energy production, their thermoelectric performance undergoes an improvement processes.Hence, the objective of the present thematic, aims at the first level, the optimization of chemical and electrochemical syntheses experimental parameters of two polymers, polypyrrole and polythiophene, with respect to their thermoelectric efficiency, represented by ZT factor, using a methodology called response surface (MSR) following appropriate experimental designs. At the second stage, five experimental approaches were followed to improve the thermoelectric properties of these polymers, namely: the doping of polymers (approach 1), the development of composites with a binary composition (approach 2), the development of composites with a ternary composition (approach 3), the study of the copolymerization reaction (approach 4) and the reduction of thermal conductivity (approach 5). These experimental approaches have focused in their global frame on studying the influence of organic dopants, the addition of polymers such as PEDOT and PEDOT: PSS, the addition of inorganic fillers and the incorporation of graphitic particles, principally carbon nanotubes and graphene in its different treated and untreated forms ( neat Gr), oxidized (GO) and functionalized (FrGO) by a diazonium salt.All the necessary steps related to the development of these materials, ranging from synthesis, structural and morphological characterizations until the thermoelectric performance evaluation were studied.The ZT values of the obtained materials were improved to magnitudes reaching 6 to 2.3 x 105 times greater than that of polymers taken alone.Aiming from us to develop new strategies for the recapture of solar energy and to simulate the behavior of photovoltaic cells, a thermoelectric module providing stable and precise measurements of the potential generated at different temperatures has been developed.Les matériaux thermoélectriques ont attiré une grande attention au cours de ces dernières années, grâce à leurs propriétés réversibles de conversion de l’énergie thermique en électrique.Bien que les meilleurs rendements ont été enregistrés avec les matériaux inorganiques, principalement à base de tellurure de bismuth (Bi2Te3), ils demeurent coûteux et toxique. Par conséquent, les polymères conducteurs constituent ainsi une alternative prometteuse à la production d'énergie, qui reste sujette à l’amélioration de leurs performances thermoélectriques.C’est dans cette optique que s’inscrit notre thématique, qui vise, en premier lieu l’optimisation des paramètres expérimentaux de synthèses chimique et électrochimique de deux polymères, en l’occurrence du polypyrrole et polythiophène, à l’aide d’une méthodologie dite surface de réponse (MSR) suivant des plans d’expérience appropriés, conduisant à une efficacité thermoélectrique élevée traduite par le facteur dit ZT. En deuxième lieu, l’amélioration des propriétés thermoélectriques de ces polymère, selon cinq approches expérimentales, à savoir : le dopage des polymères (approche 1), l’élaboration des composites binaires (approche 2), l’élaboration des composites ternaires (approche 3), l’étude de la réaction de copolymérisation (approche 4) et la réduction de la conductivité thermique (approche 5). Globalement, la démarche expérimentale suivie consiste à l’étude de l’influence de plusieurs facteurs tels que, l’intervention des dopants organiques, l’ajout des polymères à l’instar du PEDOT et du PEDOT : PSS, l’addition des charge inorganiques et l’incorporation des particules graphitique, à l’exemple de nanotubes de carbone et de graphène brut (Gr), oxydé (GO) et fonctionnalisé (FrGO) par un sel de diazonium.Les étapes nécessaires à l’élaboration de ces matériaux, allant de la synthèse, des caractérisations structurales et morphologiques jusqu’à l’évaluation des performances thermoélectriques, ont été étudiées.Les valeurs de ZT des matériaux élaborés ont été améliorées à des grandeurs, 6 à 2.3 x 105 fois plus supérieurs que celle des polymères de base.Dans l’optique de l’adoption de nouvelles stratégies pour la récupération de l’énergie solaire et de simuler le comportement des cellules photovoltaïques.Un module thermoélectrique, fournissant des mesures stables et précises du potentiel généré à différentes température a été aussi. Il est basé sur de nouvelles stratégie
Thin-film preparation of conducting polymers and their composites : application to energy conversion
Les matériaux thermoélectriques ont attiré une grande attention au cours de ces dernières années, grâce à leurs propriétés réversibles de conversion de l’énergie thermique en électrique.Bien que les meilleurs rendements ont été enregistrés avec les matériaux inorganiques, principalement à base de tellurure de bismuth (Bi2Te3), ils demeurent coûteux et toxique. Par conséquent, les polymères conducteurs constituent ainsi une alternative prometteuse à la production d'énergie, qui reste sujette à l’amélioration de leurs performances thermoélectriques.C’est dans cette optique que s’inscrit notre thématique, qui vise, en premier lieu l’optimisation des paramètres expérimentaux de synthèses chimique et électrochimique de deux polymères, en l’occurrence du polypyrrole et polythiophène, à l’aide d’une méthodologie dite surface de réponse (MSR) suivant des plans d’expérience appropriés, conduisant à une efficacité thermoélectrique élevée traduite par le facteur dit ZT. En deuxième lieu, l’amélioration des propriétés thermoélectriques de ces polymère, selon cinq approches expérimentales, à savoir : le dopage des polymères (approche 1), l’élaboration des composites binaires (approche 2), l’élaboration des composites ternaires (approche 3), l’étude de la réaction de copolymérisation (approche 4) et la réduction de la conductivité thermique (approche 5). Globalement, la démarche expérimentale suivie consiste à l’étude de l’influence de plusieurs facteurs tels que, l’intervention des dopants organiques, l’ajout des polymères à l’instar du PEDOT et du PEDOT : PSS, l’addition des charge inorganiques et l’incorporation des particules graphitique, à l’exemple de nanotubes de carbone et de graphène brut (Gr), oxydé (GO) et fonctionnalisé (FrGO) par un sel de diazonium.Les étapes nécessaires à l’élaboration de ces matériaux, allant de la synthèse, des caractérisations structurales et morphologiques jusqu’à l’évaluation des performances thermoélectriques, ont été étudiées.Les valeurs de ZT des matériaux élaborés ont été améliorées à des grandeurs, 6 à 2.3 x 105 fois plus supérieurs que celle des polymères de base.Dans l’optique de l’adoption de nouvelles stratégies pour la récupération de l’énergie solaire et de simuler le comportement des cellules photovoltaïques.Un module thermoélectrique, fournissant des mesures stables et précises du potentiel généré à différentes température a été aussi. Il est basé sur de nouvelles stratégiesThermoelectric materials have attracted much attention in recent years, owing to their reversible properties of converting thermal energy into electricity.Even though, the inorganic materials, mainly based on bismuth telluride (Bi2Te3) records the best yields, they are toxics and remains expensive. Conductive polymers constitute a promising alternative materials for energy production, their thermoelectric performance undergoes an improvement processes.Hence, the objective of the present thematic, aims at the first level, the optimization of chemical and electrochemical syntheses experimental parameters of two polymers, polypyrrole and polythiophene, with respect to their thermoelectric efficiency, represented by ZT factor, using a methodology called response surface (MSR) following appropriate experimental designs. At the second stage, five experimental approaches were followed to improve the thermoelectric properties of these polymers, namely: the doping of polymers (approach 1), the development of composites with a binary composition (approach 2), the development of composites with a ternary composition (approach 3), the study of the copolymerization reaction (approach 4) and the reduction of thermal conductivity (approach 5). These experimental approaches have focused in their global frame on studying the influence of organic dopants, the addition of polymers such as PEDOT and PEDOT: PSS, the addition of inorganic fillers and the incorporation of graphitic particles, principally carbon nanotubes and graphene in its different treated and untreated forms ( neat Gr), oxidized (GO) and functionalized (FrGO) by a diazonium salt.All the necessary steps related to the development of these materials, ranging from synthesis, structural and morphological characterizations until the thermoelectric performance evaluation were studied.The ZT values of the obtained materials were improved to magnitudes reaching 6 to 2.3 x 105 times greater than that of polymers taken alone.Aiming from us to develop new strategies for the recapture of solar energy and to simulate the behavior of photovoltaic cells, a thermoelectric module providing stable and precise measurements of the potential generated at different temperatures has been developed
Nickel Oxide Decorated MWCNTs Wrapped Polypyrrole:One Dimensional Ternary Nanocomposites for Enhanced Thermoelectric Performance
This study reports on a customized and revised approach to fabricate “nickel oxide decorated multi-walled carbon nanotubes (MWCNTs) wrapped polypyrrole (PPy)” nanocomposite with enhanced room-temperature thermoelectric (TE) properties. The nanocomposite is formed through three steps: MWCNTs functionalization via diazonium salt grafting of 5-amino-1,2,3-benzene tricarboxylic acid; in situ generation on their surfaces of NiO nanoparticles with a homogenous distribution; the chemical polymerization of pyrrole using methyl orange as templating and dopant to wrap the MWCNTs-(COOH) 3-NiO. Various techniques were used as characterization tools, including XRD, TEM, FTIR, Raman, TGA, XPS, and TE measurements. The PPy-MWCNTs-(COOH) 3-NiO nanocomposite exhibits significantly higher Seebeck coefficient, electrical conductivity, and power factor than PPy and PPy-MWCNTs-(COOH) 3. The achieved enhancement in TE properties (figure of merit, ZT PPy-MWCNTs-(COOH)3-NiO=1.51×10 −2) is attributed to the presence of NiO, which acts as a dopant and improves the charge carrier density in the nanocomposite. These results offer the potential for waste heat recovery and large-scale fabrication of high-performance composites.</p