7,892 research outputs found

    A Discrete Version of the Inverse Scattering Problem and the J-matrix Method

    Full text link
    The problem of the Hamiltonian matrix in the oscillator and Laguerre basis construction from the S-matrix is treated in the context of the algebraic analogue of the Marchenko method.Comment: 11 pages. The Laguerre basis case is adde

    Energy gap revealed by low-temperature scanning-tunnelling spectroscopy of Si(111)-7x7 surface in illuminated slightly-doped crystals

    Full text link
    Physical properties of Si(111)-7x7 surface of low-doped n- and p-type Si samples is studied in the liquid helium temperature region by the scanning-tunnelling microscopy and spectroscopy. Conduction required for the study is provided by illumination of the surface. Application of illumination removes completely the band bending near the surface and restores initial population of the surface states. Our results indicate the existence of the energy gap 2{\Delta} = 40 \pm 10 meV in intrinsically-populated Si(111)-7x7 surface.Comment: Submitted to Journal of Physics: Condensed Matte

    NN potentials from inverse scattering in the J-matrix approach

    Get PDF
    An approximate inverse scattering method [7,8] has been used to construct separable potentials with the Laguerre form factors. As an application, we invert the phase shifts of proton-proton in the 1S0^1S_0 and 3P23F2^3P_2-^3F_2 channels and neutron-proton in the 3S13D1^3S_1-^3D_1 channel elastic scattering. In the latter case the deuteron wave function of a realistic npnp potential was used as input.Comment: LaTex2e, 17 pages, 3 Postscript figures; corrected typo

    Proximity Effect in Normal Metal - High Tc Superconductor Contacts

    Full text link
    We study the proximity effect in good contacts between normal metals and high Tc (d-wave) superconductors. We present theoretical results for the spatially dependent order parameter and local density of states, including effects of impurity scattering in the two sides, s-wave pairing interaction in the normal metal side (attractive or repulsive), as well as subdominant s-wave paring in the superconductor side. For the [100] orientation, a real combination d+s of the order parameters is always found. The spectral signatures of the proximity effect in the normal metal includes a suppression of the low-energy density of states and a finite energy peak structure. These features are mainly due to the impurity self-energies, which dominate over the effects of induced pair potentials. For the [110] orientation, for moderate transparencies, induction of a d+is order parameter on the superconductor side, leads to a proximity induced is order parameter also in the normal metal. The spectral signatures of this type of proximity effect are potentially useful for probing time-reversal symmetry breaking at a [110] interface.Comment: 10 pages, 10 figure

    Quasiparticle states of the Hubbard model near the Fermi level

    Full text link
    The spectra of the t-U and t-t'-U Hubbard models are investigated in the one-loop approximation for different values of the electron filling. It is shown that the four-band structure which is inherent in the case of half-filling and low temperatures persists also for some excess or deficiency of electrons. Besides, with some departure from half-filling an additional narrow band of quasiparticle states arises near the Fermi level. The dispersion of the band, its bandwidth and the variation with filling are close to those of the spin-polaron band of the t-J model. For moderate doping spectral intensities in the new band and in one of the inner bands of the four-band structure decrease as the Fermi level is approached which leads to the appearance of a pseudogap in the spectrum.Comment: 8 pages, 7 figure

    ac Josephson effect in asymmetric superconducting quantum point contacts

    Full text link
    We investigate ac Josephson effects between two superconductors connected by a single-mode quantum point contact, where the gap amplitudes in the two superconductors are unequal. In these systems, it was found in previous studies on the dc effects that, besides the Andreev bound-states, the continuum states can also contribute to the current. Using the quasiclassical formulation, we calculate the current-voltage characteristics for general transmission DD of the point contact. To emphasize bound versus continuum states, we examine in detail the low bias, ballistic (D=1) limit. It is shown that in this limit the current-voltage characteristics can be determined from the current-phase relation, if we pay particular attention to the different behaviors of these states under the bias voltage. For unequal gap configurations, the continuum states give rise to non-zero sine components. We also demonstrate that in this limit the temperature dependence of the dc component follows tanh(Δs/2T)\tanh(\Delta_s/2T), where Δs\Delta_s is the smaller gap, with the contribution coming entirely from the bound state.Comment: To appear in PR
    corecore