36 research outputs found

    Oxidative Stress in Neurodegenerative Diseases

    Get PDF

    Novel Mechanism for Memantine in Attenuating Diabetic Neuropathic Pain in Mice via Downregulating the Spinal HMGB1/TRL4/NF-kB Inflammatory Axis

    No full text
    Diabetic neuropathic pain (DNP) is a common diabetic complication that currently lacks an efficient therapy. The aim of the current work was to uncover the anti-allodynic and neuroprotective effects of memantine in a model of mouse diabetic neuropathy and its ameliorative effect on the high-mobility group box-1 (HMGB1)/toll-like receptor 4 (TLR4)/nuclear factor-k B (NF-kB) inflammatory axis. Diabetes was prompted by an alloxan injection (180 mg/kg) to albino mice. On the ninth week after diabetes induction, DNP was confirmed. Diabetic mice were randomly allocated to two groups (six mice each); a diabetes mellitus (DM) group and DM+memantine group (10 mg/kg, daily) for five weeks. DNP-related behaviors were assessed in terms of thermal hyperalgesia and mechanical allodynia by hot-plate and von Frey filaments. Enzyme-linked immunosorbent assay (ELISA) kits were used to measure the spinal glutamate, interleukin-1 beta (IL-1β), and tumor necrosis factor-α (TNF-α). The spinal levels of N-methyl-D-aspartate type 1 receptor (NMDAR1), HMGB1, TLR4, and phosphorylated NF-kB were assessed using Western blotting. Histopathological investigation of the spinal cord and sciatic nerves, together with the spinal cord ultrastructure, was employed for assessment of the neuroprotective effect. Memantine alleviated pain indicators in diabetic mice and suppressed excessive NMDAR1 activation, glutamate, and pro-inflammatory cytokine release in the spinal cord. The current study validated the ability of memantine to combat the HMGB1/TLR4/NF-kB axis and modulate overactive glutamate spinal transmission, corroborating memantine as an appealing therapeutic target in DNP

    Thymol Nanoemulsion: A New Therapeutic Option for Extensively Drug Resistant Foodborne Pathogens

    No full text
    Foodborne pathogens have been associated with severe and complicated diseases. Therefore, these types of infections are a concern for public health officials and food and dairy industries. Regarding the wide-spread multidrug resistant (MDR) and extensively drug resistant (XDR) foodborne pathogens such as Salmonella Enteritidis (S. Enteritidis), new and alternative therapeutic approaches are urgently needed. Therefore, we investigated the antimicrobial, anti-virulence, and immunostimulant activities of a stable formulation of thymol as thymol nanoemulsion in an in vivo approach. Notably, treatment with 2.25% thymol nanoemulsion led to a pronounced improvement in the body weight gain and feed conversion ratio in addition to decreases in the severity of clinical findings and mortality percentages of challenged chickens with XDR S. Enteritidis confirming its pronounced antimicrobial activities. Moreover, thymol nanoemulsion, at this dose, had protective effects through up-regulation of the protective cytokines and down-regulation of XDR S. Enteritidis sopB virulence gene and interleukins (IL)-4 and IL-10 cytokines as those hinder the host defenses. Furthermore, it enhanced the growth of gut Bifidobacteria species, which increases the strength of the immune system. For that, we suggested the therapeutic use of thymol nanoemulsion against resistant foodborne pathogens. Finally, we recommended the use of 2.25% thymol nanoemulsion as a feed additive for immunocompromised individuals as well as in the veterinary fields

    Nifuroxazide Mitigates Angiogenesis in Ehlrich’s Solid Carcinoma: Molecular Docking, Bioinformatic and Experimental Studies on Inhibition of Il-6/Jak2/Stat3 Signaling

    No full text
    Nifuroxazide is an antidiarrheal medication that has promising anticancer activity against diverse types of tumors. The present study tested the anticancer activity of nifuroxazide against Ehrlich’s mammary carcinoma grown in vivo. Furthermore, we investigated the effect of nifuroxazide on IL-6/jak2/STAT3 signaling and the possible impact on tumor angiogenesis. The biological study was supported by molecular docking and bioinformatic predictions for the possible effect of nifuroxazide on this signaling pathway. Female albino mice were injected with Ehrlich carcinoma cells to produce Ehrlich’s solid tumors (ESTs). The experimental groups were as follows: EST control, EST + nifuroxazide (5 mg/kg), and EST + nifuroxazide (10 mg/kg). Nifuroxazide was found to reduce tumor masses (730.83 ± 73.19 and 381.42 ± 109.69 mg vs. 1099.5 ± 310.83) and lessen tumor pathologies. Furthermore, nifuroxazide downregulated IL-6, TNF-α, NFk-β, angiostatin, and Jak2 proteins, and it also reduced tumoral VEGF, as indicated by ELISA and immunohistochemical analysis. Furthermore, nifuroxazide dose-dependently downregulated STAT3 phosphorylation (60% and 30% reductions, respectively). Collectively, the current experiment shed light on the antitumor activity of nifuroxazide against mammary solid carcinoma grown in vivo. The antitumor activity was at least partly mediated by inhibition of IL-6/Jak2/STAT3 signaling that affected angiogenesis (low VEGF and high angiostatin) in the EST. Therefore, nifuroxazide might be a promising antitumor medication if appropriate human studies will be conducted

    Antitumor Activity of Nitazoxanide against Colon Cancers: Molecular Docking and Experimental Studies Based on Wnt/β-Catenin Signaling Inhibition

    No full text
    In colon cancer, wingless (Wnt)/β-catenin signaling is frequently upregulated; however, the creation of a molecular therapeutic agent targeting this pathway is still under investigation. This research aimed to study how nitazoxanide can affect Wnt/β-catenin signaling in colon cancer cells (HCT-116) and a mouse colon cancer model. Our study included 2 experiments; the first was to test the cytotoxic activity of nitazoxanide in an in vitro study on a colon cancer cell line (HCT-116) versus normal colon cells (FHC) and to highlight the proapoptotic effect by MTT assay, flow cytometry and real-time polymerase chain reaction (RT-PCR). The second experiment tested the in vivo cytotoxic effect of nitazoxanide against 1,2-dimethylhydrazine (DMH) prompted cancer in mice. Mice were grouped as saline, DMH control and DMH + nitazoxanide [100 or 200 mg per kg]. Colon levels of Wnt and β-catenin proteins were assessed by Western blotting while proliferation was measured via immunostaining for proliferating cell nuclear antigen (PCNA). Treating HCT-116 cells with nitazoxanide (inhibitory concentration 50 (IC50) = 11.07 µM) revealed that it has a more cytotoxic effect when compared to 5-flurouracil (IC50 = 11.36 µM). Moreover, it showed relatively high IC50 value (non-cytotoxic) against the normal colon cells. Nitazoxanide induced apoptosis by 15.86-fold compared to control and arrested the cell cycle. Furthermore, nitazoxanide upregulated proapoptotic proteins (P53 and BAX) and caspases but downregulated BCL-2. Nitazoxanide downregulated Wnt/β-catenin/glycogen synthase kinase-3β (GSK-3β) signaling and PCNA staining in the current mouse model. Hence, our findings highlighted the cytotoxic effect of nitazoxanide and pointed out the effect on Wnt/β-catenin/GSK-3β signaling
    corecore