7 research outputs found

    Specific detection of fungal pathogens by 18S rRNA gene PCR in microbial keratitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The sensitivity and specificity of 18S rRNA polymerase chain reaction (PCR) in the detection of fungal aetiology of microbial keratitis was determined in thirty patients with clinical diagnosis of microbial keratitis.</p> <p>Methods</p> <p>Corneal scrapings from patients were used for Gram stain, culture and PCR analysis. PCR was performed with primer pairs targeted to the 18S rRNA gene. The result of the PCR was compared with conventional culture and Gram staining method. The PCR positive samples were identified by DNA sequencing of the internal transcribed spacer (ITS) region of the rRNA gene. Main outcome measures were sensitivity and specificity of PCR in the detection of fungus in corneal keratitis.</p> <p>Results</p> <p>Combination of microscopy and culture gave a positive result in 11 of 30 samples of microbial keratitis. PCR detected 10 of 11 samples that were positive by conventional method. One of the 19 samples that was negative by conventional method was positive by PCR. Statistical analysis revealed that the PCR to have a sensitivity of 90.9% and specificity of 94.7% in the detection of a fungal aetiology in microbial keratitis.</p> <p>Conclusion</p> <p>PCR is a rapid, sensitive and useful method to detect fungal aetiology in microbial keratitis.</p

    Cloning, Expression, and Purification of Recombinant Protein from a Single Synthetic Multivalent Construct of Mycobacterium Tuberculosis

    No full text
    Tuberculosis remains a major infectious disease with over 8 million new cases and 2 million deaths annually. Therefore, a vaccine more potent than BCG is desperately needed. In this regard, an approximately 800 bp DNA encoding a mycobacterial synthetic gene designated as VacIII (containing ubiquitin gene UbGR and four immunogenic mycobacterial epitopes or genes of ESAT-6, Phos1, Hsp 16.3, and Mtb8.4) was sub-cloned into a bacterial expression vector of pRSET-B resulting in a 6x His-VaeIII fusion gene construction. This recombinant clone was over expressed in Escherichia coli BL-21 (DE-3). The expressed fusion protein was found almost entirely in the insoluble form (inclusion bodies) in cell lysate. The inclusion bodies were solubilized with 8 M urea and the recombinant protein was purified by Ni-NTA column and dialyzed by urea gradient dialysis. This method produced a relatively high yield of recombinant VacIII protein and the cloned VacIII gene offers the potential development of other vaccine formats such as DNA vaccine and recombinant vaccine. (c) 2006 Elsevier Inc. All rights reserved

    Comparison of histopathological features of Vibrio cholerae O1 El Tor and O139 Bengal infections in rabbit intestinal mucosa

    No full text
    Vibrio cholerae is the causative agent of the infectious disease, cholera. The bacteria adhere to the mucosal membrane and release cholera toxin, leading to watery diarrhea. There are >100 serovars of V. cholerae, but the O1 and O139 serovars are the main causative agents of cholera. The present study aimed to compare the severity of intestinal mucosal infection caused by O1 El Tor and O139 V. cholerae in a rabbit ileal loop model. The results showed that although the fluid accumulation was similar in the loops inoculated with O1 and O139 V. cholerae, the presence of blood was detected only in the loops inoculated with the O139 serovar. Serosal hemorrhage was confirmed by histopathological examination and the loops inoculated with O139 showed massive destruction of villi and loss of intestinal glands. The submucosa and muscularis mucosa of the ileum showed the presence of edema with congested blood vessels, while severe hemorrhage was seen in the muscularis propria layer. The loops inoculated with O1 El Tor showed only minimal damage, with intact intestinal villi and glands. Diffuse colonies of the O139 serovar were seen to have infiltrated deep into the submucosal layer of the intestine. Although the infection caused by the O1 serovar was focal and invasive, it was more superficial than that due to O139, and involved only the villi. These observations were confirmed by immunostaining with O1 and O139 V. cholerae-specific monoclonal antibodies. The peroxidase reaction demonstrated involvement of tissues down to the submucosal layer in O139 V. cholerae infection, while in O1 El Tor infection, the reaction was confined mainly to the villi, and was greatly reduced in the submucosal region. This is the first reported study to clearly demonstrate the histopathological differences between infections caused by the O139 Bengal and O1 El Tor pathogenic serovars of V. cholerae
    corecore