11 research outputs found

    Negative Poisson’s ratio polyethylene matrix and 0.5BaCa0.8Zr0.2O3-0.5Ba0.7Ca0.3TiO3 based piezocomposite for sensing and energy harvesting applications

    Get PDF
    Abstract Finite element studies were conducted on 0.5Ba(Zr0.2 Ti0.8) O3–0.5(Ba0.7 Ca0.3)TiO3 (BCZT) piezoelectric particles embedded in polyethylene matrix to create a piezocomposite having a positive and negative Poisson's ratio of −0.32 and 0.2. Polyethylene with a positive Poisson's ratio is referred to as non-auxetic while those with negative Poisson's ratio are referred to as auxetic or inherently auxetic. The effective elastic and piezoelectric properties were calculated at volume fractions of (4%, 8% to 24%) to study their sensing and harvesting performance. This study compared lead-free auxetic 0–3 piezocomposite for sensing and energy harvesting with non-auxetic one. Inherently auxetic piezocomposites have been studied for their elastic and piezoelectric properties and improved mechanical coupling, but their sensing and energy harvesting capabilities and behavior patterns have not been explored in previous literatures. The effect of Poisson's ratio ranging between −0.9 to 0.4 on the sensing and energy harvesting performance of an inherently auxetic lead free piezocomposite composite with BCZT inclusions has also not been studied before, motivating the author to conduct the present study. Auxetic piezocomposite demonstrated an overall improvement in performance in terms of higher sensing voltage and harvested power. The study was repeated at a constant volume fraction of 24% for a range of Poisson's ratio varied between −0.9 to 0.4. Enhanced performance was observed at the extreme negative end of the Poisson's ratio spectrum. This paper demonstrates the potential improvements by exploiting auxetic matrices in future piezocomposite sensors and energy harvesters

    Machine Learning Assisted Prediction of Power Conversion Efficiency of All-Small Molecule Organic Solar Cells: A Data Visualization and Statistical Analysis

    No full text
    Organic solar cells are famous for their cheap solution processing. Their industrialization needs fast designing of efficient materials. For this purpose, testing of large number of materials is necessary. Machine learning is a better option due to cheaper prediction of power conversion efficiencies. In the present work, machine learning was used to predict power conversion efficiencies. Experimental data were collected from the literature to feed the machine learning models. A detailed data visualization analysis was performed to study the trends of the dataset. The relationship between descriptors and power conversion efficiency was quantitatively determined by Pearson correlations. The importance of features was also determined using feature importance analysis. More than 10 machine learning models were tried to find better models. Only the two best models (random forest regressor and bagging regressor) were selected for further analysis. The prediction ability of these models was high. The coefficient of determination (R2) values for the random forest regressor and bagging regressor models were 0.892 and 0.887, respectively. The Shapley additive explanation (SHAP) method was used to identify the impact of descriptors on the output of models

    Photonics with Gallium Nitride Nanowires

    No full text
    The surface plasmon resonance in low-dimensional semiconducting materials is a source of valuable scientific phenomenon which opens widespread prospects for novel applications. A systematic study to shed light on the propagation of plasmons at the interface of GaN nanowire is reported. A comprehensive analysis of the interaction of light with GaN nanowires and the propagation of plasmons is carried out to uncover further potentials of the material. The results obtained on the basis of calculations designate the interaction of light with nanowires, which produced plasmons at the interface that propagate along the designed geometry starting from the center of the nanowire towards its periphery, having more flux density at the center of the nanowire. The wavelength of light does not affect the propagation of plasmons but the flux density of plasmons appeared to increase with the wavelength. Similarly, an increment in the flux density of plasmons occurs even in the case of coupled and uncoupled nanowires with wavelength, but more increment occurs in the case of coupling. Further, it was found that an increase in the number of nanowires increases the flux density of plasmons at all wavelengths irrespective of uniformity in the propagation of plasmons. The findings point to the possibility of tuning the plasmonics by using a suitable number of coupled nanowires in assembly

    Piezo-photocatalytic activity of Bi2VO5.5 for methylene blue dye degradation

    No full text
    This study comprises the combined effect of piezocatalytic and photocatalytic activity to obtain improved piezo-photocatalytic dye degradation efficiency in visible light. Single-phase Bi2VO5.5 powder was prepared through solid-state synthesis at 750 °C in 8 h. Time-dependent photocurrent responses were conducted to understand the phenomenon of charge carrier transport in visible light. Bi2VO5.5 powder sample demonstrated high photocatalytic efficiency and good reusability possessing a bandgap value of 2.13 eV. Bi2VO5.5 powder sample attained ∼70% and ∼58% degradation efficiency during photocatalysis and piezocatalysis respectively. The piezo-photocatalytic methylene blue dye attained ∼82% degradation efficiency in 240 min duration of visible light illumination. The scavenger test depicted holes (h+) as the principal active species in the piezo-photocatalytic dye degradation. There incurred no severe loss in photocatalytic efficiency even after 4 cycles which proclaims the reusability of the Bi2VO5.5 powder sample. A study on the kinetic rate constant with varying dye concentrations was conducted. With varied dye concentration of 5, 10, 15 mg/L, the kinetic rate constant obtained was 0.00528, 0.0030, and 0.00125 min−1, respectively. Germination index was found through a phytotoxicity test using vigna radiata seeds. Here visible light along with mechanical energy has been used to achieve higher MB dye degradation efficiency through piezo-photocatalysis

    Polypyrrole/Magnetic/Tea Waste Composites for PO43− Ions Removal: Adsorption-Desorption, Kinetics, and Thermodynamics Studies

    No full text
    The polypyrrole (PPY/TW) and magnetic (MG/TW) composite with tea waste (TW) was prepared and used as an adsorbent for PO43− ions removal from aqueous media. The composite were characterized with SEM and FTIR techniques. Batch study was conducted to investigate the effect of different reaction parameters on the adsorption of PO43− ions. The native TW, PPY/TW, and MG/TW showed the PO43− ions removal of 7.2, 7.3, and 7.9 (mg/g), respectively, using 0.05 g adsorbent dose and 10 mg/L initial concentration of PO43− ions at pH of 6, 10, and 3, respectively, and equilibrium was reached in 90 min. Kinetics and isotherm models were employed on the PO43− ions adsorption data and PO43− ions adsorption followed the pseudo-second order kinetics, intraparticle diffusion, and Langmuir isotherm models. Thermodynamics analysis reveals an exothermic process and spontaneous adsorption of PO43− ions on the composites. Results revealed that the magnetic and polypyrrole composites with tea waste have auspicious potential as an adsorbent and this class of the composites can be utilized for the removal of PO43− ions from the effluents

    Effect of Poling on Multicatalytic Performance of 0.5Ba(Zr<sub>0.2</sub>Ti<sub>0.8</sub>)O<sub>3</sub>-0.5(Ba<sub>0.7</sub>Sr<sub>0.3</sub>)TiO<sub>3</sub> Ferroelectric Ceramic for Dye Degradation

    No full text
    Ferroelectric materials with a spontaneous polarization are proven to be potential multicatalysts in water remediation applications. The composition of 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Sr0.3)TiO3 (BST-BZT) was examined for photocatalysis, piezocatalysis, and piezo-photocatalysis processes by degrading an azo dye named methylene blue (MB). Generally, dis-aligned dipoles restrict the catalytic activities due to which the BST-BZT powder sample was poled by the corona poling technique. Coupled piezocatalysis and photocatalysis process, i.e., the piezo-photocatalysis process has shown maximum dye degradation. There was a significant improvement in degradation efficiency by using a poled BST-BZT sample compared to the unpoled sample in all processes, thus the results suggest an extensive scope of poled ferroelectric ceramic powder in the catalysis field

    Negative Poisson’s ratio polyethylene matrix and 0.5BaCa0.8Zr0.2O3-0.5Ba0.7Ca0.3TiO3 based piezocomposite for sensing and energy harvesting applications

    Get PDF
    Finite element studies were conducted on 0.5Ba(Zr0.2 Ti0.8) O3-0.5(Ba0.7 Ca0.3)TiO3 (BCZT) piezoelectric particles embedded in polyethylene matrix to create a piezocomposite having a positive and negative Poisson's ratio of -0.32 and 0.2. Polyethylene with a positive Poisson's ratio is referred to as non-auxetic while those with negative Poisson's ratio are referred to as auxetic or inherently auxetic. The effective elastic and piezoelectric properties were calculated at volume fractions of (4%, 8% to 24%) to study their sensing and harvesting performance. This study compared lead-free auxetic 0-3 piezocomposite for sensing and energy harvesting with non-auxetic one. Inherently auxetic piezocomposites have been studied for their elastic and piezoelectric properties and improved mechanical coupling, but their sensing and energy harvesting capabilities and behavior patterns have not been explored in previous literatures. The effect of Poisson's ratio ranging between -0.9 to 0.4 on the sensing and energy harvesting performance of an inherently auxetic lead free piezocomposite composite with BCZT inclusions has also not been studied before, motivating the author to conduct the present study. Auxetic piezocomposite demonstrated an overall improvement in performance in terms of higher sensing voltage and harvested power. The study was repeated at a constant volume fraction of 24% for a range of Poisson's ratio varied between -0.9 to 0.4. Enhanced performance was observed at the extreme negative end of the Poisson's ratio spectrum. This paper demonstrates the potential improvements by exploiting auxetic matrices in future piezocomposite sensors and energy harvesters.<br/

    A facile green approach to the synthesis of Bi2WO6@V2O5 heterostructure and their photocatalytic activity evaluation under visible light irradiation for RhB dye removal

    No full text
    Bismuth tungsten oxide and vanadium pentoxide (Bi2WO6/V2O5) heterostructures are produced by a green synthesis approach using Azadirachta indica extract for photocatalytic performance. The hydrothermal method at temperatures between 120 °C and 140 °C is used to synthesize Bi2WO6. Bi2WO6 and V2O5 phases are formed in pure orthorhombic wells according to the XRD pattern. The SEM displays V2O5 nanorods, Bi2WO6 hierarchical microspheres that resemble flowers at 120 °C, and particles with a particle-like character at 140 °C. In V2O5, the asymmetric stretching vibrations of the triplely coordinated oxygen (chain oxygen) bonds and the vibration of the doubly coordinated oxygen (bridge oxygen) bonds are responsible for a peak at 611 cm−1. In FTIR spectra between 600 and 1600 cm−1, the major absorption bands in Bi2WO6 are attributed to the W-O stretching, Bi-O stretching, and W-O-W bridging stretching modes. Bi2WO6@V2O5 at 120 °C has the lowest bandgap energy (2.32 eV) and optical electronegativity (0.62), as well as the highest refractive index (2.57), extinction coefficient (2.21), and dielectric constant (εr = 0.72 and εi = 11.4) among all samples, making it a suitable material for photocatalysis. Rhodamine blue (RhB) dye degradation is used to measure the photocatalytic activity (PCA) of certain materials. The results showed that heterostructure V2O5@Bi2WO6 synthesized at 120 °C is more attractive among all samples due to high degradation of RhB dye under sunlight irradiation in 90 min

    Heavy Metal Estimation and Quality Assurance Parameters for Water Resources in the Northern Region of Pakistan

    Get PDF
    The current study investigates the water quality parameters of drinking water resources in District Neelam (DNLM), Azad Jammu & Kashmir (AJK), Northwestern Pakistan. The studied area has been recently reported with many waterborne diseases, which probed this analytical study. The samples were aseptically collected from springs, taps, and surface water bodies. The water quality parameters, such as physical, microbiological, anions, and heavy metals, were tested. Results showed that the electrical conductance (EC) and total dissolved solids (TDS), were 974.60 µS/cm and 912.10 mg/L, respectively, exacerbating the quality of drinking water in DNLM. For microbial water testing, we used 3M-Petrifilms as a detection source, which could separate coliform bacteria from E. coli by creating unique surface chromophores. Out of sixty collected samples, 76% had bacterial contamination. Nitrite, nitrate, and phosphate (9.8, 15.0, and 15.1 mg/L), were also surpassing the safe limits of the World Health Organization (WHO) standards for water quality measurement. The heavy metals, i.e., As, Cr, Cu, and Pb were also tested in current analysis. Pb and Cr (0.04 mg/L and 0.06 mg/L) exceeded from safe drinking water guidelines of the WHO and more than 50% of the collected samples had Pb as a major water pollutant in DNLM. Poor waste management, open sludge discharge, lack of municipality measures, and mineral leaching into the freshwaters of DNLM due to mining and metal extraction processes were the main sources of water pollution in the region. The inorganic pollutants were responsible for the sudden rise of different malignancies and other fatal diseases (vital organ failures and reproductive disorders) in the region, which has not been reported in the past. The current investigation yielded useful baseline data of the drinking water reserves of NW Pakistan that could help to develop techniques for the mitigation of water pollutants present in the region

    Negative poisson's ratio polyethylene matrix and 0.5Ba(Zr₀.₂ Ti₀.₈) O₃-0.5(Ba₀.₇ Ca₀.₃)TiO₃ based piezocomposite for sensing and energy harvesting applications

    No full text
    Finite element studies were conducted on 0.5Ba(Zr0.2 Ti0.8) O3-0.5(Ba0.7 Ca0.3)TiO3 (BCZT) piezoelectric particles embedded in polyethylene matrix to create a piezocomposite having a positive and negative Poisson's ratio of -0.32 and 0.2. Polyethylene with a positive Poisson's ratio is referred to as non-auxetic while those with negative Poisson's ratio are referred to as auxetic or inherently auxetic. The effective elastic and piezoelectric properties were calculated at volume fractions of (4%, 8% to 24%) to study their sensing and harvesting performance. This study compared lead-free auxetic 0-3 piezocomposite for sensing and energy harvesting with non-auxetic one. Inherently auxetic piezocomposites have been studied for their elastic and piezoelectric properties and improved mechanical coupling, but their sensing and energy harvesting capabilities and behavior patterns have not been explored in previous literatures. The effect of Poisson's ratio ranging between -0.9 to 0.4 on the sensing and energy harvesting performance of an inherently auxetic lead free piezocomposite composite with BCZT inclusions has also not been studied before, motivating the author to conduct the present study. Auxetic piezocomposite demonstrated an overall improvement in performance in terms of higher sensing voltage and harvested power. The study was repeated at a constant volume fraction of 24% for a range of Poisson's ratio varied between -0.9 to 0.4. Enhanced performance was observed at the extreme negative end of the Poisson's ratio spectrum. This paper demonstrates the potential improvements by exploiting auxetic matrices in future piezocomposite sensors and energy harvesters.Published versionThe authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R124), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia for funding this work through Large Research Groups Program under grant number L.R.G.P2/171/43. This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and 607 the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20192010106790 and No. 20204010600090)
    corecore