8 research outputs found

    Emergence of pathway-level composite biomarkers from converging gene set signals of heterogeneous transcriptomic responses

    Get PDF
    Recent precision medicine initiatives have led to the expectation of improved clinical decision-making anchored in genomic data science. However, over the last decade, only a handful of new single-gene product biomarkers have been translated to clinical practice (FDA approved) in spite of considerable discovery efforts deployed and a plethora of transcriptomes available in the Gene Expression Omnibus. With this modest outcome of current approaches in mind, we developed a pilot simulation study to demonstrate the untapped benefits of developing disease detection methods for cases where the true signal lies at the pathway level, even if the pathway's gene expression alterations may be heterogeneous across patients. In other words, we relaxed the cross-patient homogeneity assumption from the transcript level (cohort assumptions of deregulated gene expression) to the pathway level (assumptions of deregulated pathway expression). Furthermore, we have expanded previous single-subject (SS) methods into cohort analyses to illustrate the benefit of accounting for an individual's variability in cohort scenarios. We compare SS and cohort-based (CB) techniques under 54 distinct scenarios, each with 1,000 simulations, to demonstrate that the emergence of a pathway-level signal occurs through the summative effect of its altered gene expression, heterogeneous across patients. Studied variables include pathway gene set size, fraction of expressed gene responsive within gene set, fraction of expressed gene responsive up- vs down-regulated, and cohort size. We demonstrated that our SS approach was uniquely suited to detect signals in heterogeneous populations in which individuals have varying levels of baseline risks that are simultaneously confounded by patient-specific "genome -by-environment" interactions (GxE). Area under the precision-recall curve of the SS approach far surpassed that of the CB (1st quartile, median, 3 rd quartile: SS = 0.94, 0.96, 0.99; CB= 0.50, 0.52, 0.65). We conclude that single-subject pathway detection methods are uniquely suited for consistently detecting pathway dysregulation by the inclusion of a patient's individual variability.University of Arizona Health Sciences CB2, the BIOS Institute; NIH [U01AI122275, HL132532, CA023074, 1UG3OD023171, 1R01AG053589-01A1, 1S10RR029030]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    OUP accepted manuscript

    No full text
    Motivation: Identifying altered transcripts between very small human cohorts is particularly challenging and is compounded by the low accrual rate of human subjects in rare diseases or sub-stratified common disorders. Yet, single-subject studies (S3) can compare paired transcriptome samples drawn from the same patient under two conditions (e.g. treated versus pre-treatment) and suggest patient-specific responsive biomechanisms based on the overrepresentation of functionally defined gene sets. These improve statistical power by: (i) reducing the total features tested and (ii) relaxing the requirement of within-cohort uniformity at the transcript level. We propose Inter-N-of-1, a novel method, to identify meaningful differences between very small cohorts by using the effect size of 'single-subject-study'-derived responsive biological mechanisms. Results: In each subject, Inter-N-of-1 requires applying previously published S3-type N-of-1-pathways MixEnrich to two paired samples (e.g. diseased versus unaffected tissues) for determining patient-specific enriched genes sets: Odds Ratios (S3-OR) and S3-variance using Gene Ontology Biological Processes. To evaluate small cohorts, we calculated the precision and recall of Inter-N-of-1 and that of a control method (GLM+EGS) when comparing two cohorts of decreasing sizes (from 20 versus 20 to 2 versus 2) in a comprehensive six-parameter simulation and in a proof-of-concept clinical dataset. In simulations, the Inter-N-of-1 median precision and recall are > 90% and >75% in cohorts of 3 versus 3 distinct subjects (regardless of the parameter values), whereas conventional methods outperform Inter-N-of-1 at sample sizes 9 versus 9 and larger. Similar results were obtained in the clinical proof-of-concept dataset.Open access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore