30 research outputs found

    Early Onset Horizontal Gaze Palsy and Progressive Scoliosis Due to a Noncanonical Splicing-Site Variant and a Missense Variant in the ROBO3 Gene

    Get PDF
    BACKGROUND: Homozygous or compound heterozygous ROBO3 gene mutations cause horizontal gaze palsy with progressive scoliosis (HGPPS). This is an autosomal recessive disorder that is characterized by congenital absence or severe restriction of horizontal gaze and progressive scoliosis. To date, almost 100 patients with HGPPS have been reported and 55 ROBO3 mutations have been identified. METHODS: We described an HGPPS patient and performed whole-exome sequencing (WES) to identify the causative gene. RESULTS: We identified a missense variant and a splice-site variant in the ROBO3 gene in the proband. Sanger sequencing of cDNA revealed the presence of an aberrant transcript with retention of 700 bp from intron 17, which was caused by a variation in the noncanonical splicing site. We identified five additional ROBO3 variants, which were likely pathogenic, and estimated the overall allele frequency in the southern Chinese population to be 9.44 × 10 CONCLUSION: This study has broadened the mutation spectrum of the ROBO3 gene and has expanded our knowledge of variants in noncanonical splicing sites. The results could help to provide more accurate genetic counseling to affected families and prospective couples. We suggest that the ROBO3 gene should be included in the local screening strategy

    Identification of Differentially Expressed lncRNAs in a CpG ODN-Activated Macrophage

    No full text
    A macrophage is an important component of innate immunity which can be activated by infection. A series of inflammatory cytokines are produced and released to eliminate pathogens. CpG DNA is an immune stimulator recognized by TLR9, subsequently inducing inflammatory responses in macrophages. Long noncoding RNA (lncRNA) is a novel class of noncoding RNA, whose length is more than 200 nt, but without protein-coding capacity. lncRNAs are involved in many physiological and pathological processes, including inflammatory responses. In our study, a lncRNA microarray assay was performed to identify differentially expressed lncRNAs and mRNAs in RAW264.7 cells at different time points following CpG ODN stimulation. The results revealed that expression levels of 734 lncRNAs and 734 mRNAs were altered at all time points. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analyses were performed to predict the functions of dysregulated genes. Coexpression networks of lncRNA-mRNA were constructed based on the correlation analysis between differentially expressed lncRNAs and 10 selected upregulated mRNAs, which have been reported to be involved in CpG DNA-induced inflammatory responses. In addition, we selected 8 dysregulated lncRNAs for further validation by quantitative real-time PCR. The present study provided a systematic perspective on the potential functions of lncRNAs in CpG ODN-induced macrophage activation

    A novel variant in NSUN2 causes intellectual disability in a Chinese family

    No full text
    Abstract NSUN2-intellectual disability syndrome, also known as intellectual disability type 5 (MRT5), is an autosomal recessive disorder that is characterized by intellectual disability (ID), postnatal growth retardation, dysmorphic facies, microcephaly, short stature, developmental delay, language impairment and other congenital abnormalities. The disease is caused by mutations in the NSUN2 gene, which encodes a tRNA cytosine methyltransferase that has an important role in spindle assembly during mitosis and chromosome segregation. In this study, we recruited a family that had two individuals with ID. Whole exome sequencing was performed to identify a homozygous frameshift variant (c.1171_1175delACCAT(p.Thr391fs*18*)) in NSUN2 (NM_017755.5) in the proband. The varint was confirmed as segregating in his affected brother and his parents by Sanger sequencing. The individuals that we described showed a similar dysmorphology profile to that associated with MRT5. To analyze the correlations between genotypes of NSUN2 and phenotypes of individuals with ID, we examined 17 variants and the associated phenotypes from 32 ID individuals in current and previous studies. We concluded that mutations in NSUN2 cause a wide range of phenotypic defects. Although some clinical manifestations were highly variable, the core phenotypes associated with NSUN2 mutations were dysmorphic facies, microcephaly, short stature, ID, growth restriction, language impairment, hypotonia and delayed puberty. Our study expands the genetic spectrum of NSUN2 mutations and helps to further define the genotype-phenotype correlations in MRT5

    Upregulation of CALD1 predicted a poor prognosis for platinum-treated ovarian cancer and revealed it as a potential therapeutic resistance target

    No full text
    Abstract Background Ovarian cancer (OC) has the worst prognosis among gynecological malignancies, most of which are found to be in advanced stage. Cell reduction surgery based on platinum-based chemotherapy is the current standard of treatment for OC, but patients are prone to relapse and develop drug resistance. The objective of this study was to identify a specific molecular target responsible for platinum chemotherapy resistance in OC. Results We screened the protein-coding gene Caldesmon (CALD1), expressed in cisplatin-resistant OC cells in vitro. The prognostic value of CALD1 was evaluated using survival curve analysis in OC patients treated with platinum therapy. The diagnostic value of CALD1 was verified by drawing a Receiver Operating Characteristic (ROC) curve using clinical samples from OC patients. This study analyzed data from various databases including Gene Expression Omnibus (GEO), Human Protein Atlas (HPA), The Cancer Cell Line Encyclopedia (CCLE), The Cancer Genome Atlas (TCGA), GEPIA 2, UALCAN, Kaplan–Meier (KM) plotter, LinkedOmics database, and String. Different expression genes (DEGs) between cisplatin-sensitive and cisplatin-resistant cells were acquired respectively from 5 different datasets of GEO. CALD1 was selected as a common gene from 5 groups DEGs. Online data analysis of HPA and CCLE showed that CALD1 was highly expressed in both normal ovarian tissue and OC. In TCGA database, high expression of CALD1 was associated with disease stage and venous invasion in OC. Patients with high CALD1 expression levels had a worse prognosis under platinum drug intervention, according to Kaplan–Meier (KM) plotter analysis. Analysis of clinical sample data from GEO showed that CALD1 had superior diagnostic value in distinguishing patients with platinum "resistant" and platinum "sensitive" (AUC = 0.816), as well as patients with worse progression-free survival (AUC = 0.741), and those with primary and omental metastases (AUC = 0.811) in ovarian tumor. At last, CYR61 was identified as a potential predictive molecule that may play an important role alongside CALD1 in the development of platinum resistance in OC. Conclusions CALD1, as a member of cytoskeletal protein, was associated with poor prognosis of platinum resistance in OC, and could be used as a target protein for mechanism study of platinum resistance in OC

    Whole‐exome sequencing identified novel compound heterozygous variants in a Chinese neonate with liver failure and review of literature

    No full text
    Abstract Background Liver failure caused by TRMU is a rare hereditary disorder and clinically manifests into metabolic acidosis, hyperlactatemia, and hypoglycemia. Limited spectrum of TRMU pathogenic variants has been reported. Methods Whole‐exome sequencing was employed for the diagnosis of a 5‐day‐old female who suffered from severe neonatal hyperlactatemia and hypoglycemia since birth. Sanger sequencing was performed to confirm the origin of the variants subsequently. Variants classification was followed to ACMG guideline. Results A compound heterozygosity of a frameshiftc.34_35dupTC (p.Gly13fs) and a missense c.244T>G (p.Phe82Val) in TRMU was detected, both variants are novel and pathogenic. Analysis of clinical and genetic information including patients reported previously indicated that there is no significant correlation between the genotype and the phenotype of TRMU‐caused liver failure. Conclusion To the best of our knowledge, this is the first case report of TRMU‐caused liver failure in China. Whole‐exome sequencing is effective for conclusive diagnosis of this disorder and beneficial for its clinical management

    The function and mechanism of lactate and lactylation in tumor metabolism and microenvironment

    No full text
    Lactate is an end product of glycolysis. Owing to the lactate shuttle concept introduced in the early 1980s, increasing researchers indicate lactate as a critical energy source for mitochondrial respiration and as a precursor of gluconeogenesis. Lactate also acts as a multifunctional signaling molecule through receptors expressed in various cells, resulting in diverse biological consequences including decreased lipolysis, immune regulation, and anti-inflammation wound healing, and enhanced exercise performance in association with the gut microbiome. Furthermore, increasing evidence reveals that lactate contributes to epigenetic gene regulation by lactylating lysine residues of histones, which accounts for its key role in immune modulation and maintenance of homeostasis. Here, we summarize the function and mechanism of lactate and lactylation in tumor metabolism and microenvironment

    Two novel mutations in DNAJC12

    No full text
    Abstract Background Recently hyperphenylalaninemia (HPA) caused by variants in DNAJC12 was reported and this suggested a new strategy for diagnosis. But DNAJC12‐associated HPA is a rare in Chinese population so far. Methods The clinical information and blood samples from the patient and his family members were collected and analyzed. Whole‐exome sequencing (WES) was used to identify the causative gene. Results We reported a newborn patient with HPA, having excluded the causes in common genes associated with HPA. By using whole‐exome sequencing, novel compound heterozygosity mutations in DNAJC12 were found, namely c.306C>G (p.His102Gln) and c.182delA (p.Lys61Argfs*6). Administering a diet with low phenylalanine combined with tetrahydrobiopterin and neurotransmitter precursors were shown to be effective in preventing neurodevelopmental delay for these patients. Conclusion Our finding confirms the diagnosis of DNAJC12‐associated HPA and suggests that genetic detection of DNAJC12 should be considered when newborn screening results are positive for HPA

    GhMAX2 Contributes to Auxin-Mediated Fiber Elongation in Cotton (<i>Gossypium hirsutum</i>)

    No full text
    Strigolactones (SLs) represent a new group of phytohormones that play a pivotal role in the regulation of plant shoot branching and the development of adventitious roots. In cotton (Gossypium hirsutum, Gh), SLs play a crucial role in the regulation of fiber cell elongation and secondary cell wall thickness. However, the underlying molecular mechanisms of SL signaling involved in fiber cell development are largely unknown. In this study, we report two SL-signaling genes, GhMAX2-3 and GhMAX2-6, which positively regulate cotton fiber elongation. Further protein—protein interaction and degradation assays showed that the repressor of the auxin cascade GhIAA17 serves as a substrate for the F-box E3 ligase GhMAX2. The in vivo ubiquitination assay suggested that GhMAX2-3 and GhMAX2-6 ubiquitinate GhIAA17 and coordinately degrade GhIAA17 with GhTIR1. The findings of this investigation offer valuable insights into the roles of GhMAX2-mediated SL signaling in cotton and establish a solid foundation for future endeavors aimed at optimizing cotton plant cultivation

    Clinical features and molecular genetic investigation of infantile-onset ascending hereditary spastic paralysis (IAHSP) in two Chinese siblings caused by a novel splice site ALS2 variation

    No full text
    Abstract Objective ALS2-related disorder involves retrograde degeneration of the upper motor neurons of the pyramidal tracts, among which autosomal recessive Infantile-onset ascending hereditary spastic paralysis (IAHSP) is a rare phenotype. In this study, we gathered clinical data from two Chinese siblings who were affected by IAHSP. Our aim was to assess the potential pathogenicity of the identified variants and analyze their clinical and genetic characteristics. Method Here, Whole-exome sequencing (WES) was performed on proband to identify the candidate variants. Subsequently, Sanger sequencing was used to verify identified candidate variants and to assess co-segregation among available family members. Utilizing both silico prediction and 3D protein modeling, an analysis was conducted to evaluate the potential functional implications of the variants on the encoded protein, and minigene assays were performed to unravel the effect of the variants on the cleavage of pre-mRNA. Results Both patients were characterized by slurred speech, astasia, inability to walk, scoliosis, lower limb hypertonia, ankle clonus, contracture of joint, foot pronation and no psychomotor retardation was found. Genetic analysis revealed a novel homozygous variant of ALS2, c.1815G > T(p.Lys605Asn) in two Chinese siblings. To our knowledge, it is the first confirmed case of a likely pathogenic variant leading to IAHSP in a Chinese patient. Conclusion This study broadens the range of ALS2 variants and has practical implications for prenatal and postnatal screening of IAHSR. Symptom-based diagnosis of IAHSP is frequently difficult for medical practitioners. WES can be a beneficial resource to identify a particular disorder when the diagnosis cannot be determined from the symptoms alone
    corecore