7 research outputs found
Glycosylation of Erythrocyte Spectrin and Its Modification in Visceral Leishmaniasis
Using a lectin, Achatinin-H, having preferential specificity for glycoproteins with terminal 9-O-acetyl sialic acid derivatives linked in α2-6 linkages to subterminal N-acetylgalactosamine, eight distinct disease-associated 9-O-acetylated sialoglycoproteins was purified from erythrocytes of visceral leishmaniaisis (VL) patients (RBCVL). Analyses of tryptic fragments by mass spectrometry led to the identification of two high-molecular weight 9-O-acetylated sialoglycoproteins as human erythrocytic α- and β-spectrin. Total spectrin purified from erythrocytes of VL patients (spectrinVL) was reactive with Achatinin-H. Interestingly, along with two high molecular weight bands corresponding to α- and β-spectrin another low molecular weight 60 kDa band was observed. Total spectrin was also purified from normal human erythrocytes (spectrinN) and insignificant binding with Achatinin-H was demonstrated. Additionally, this 60 kDa fragment was totally absent in spectrinN. Although the presence of both N- and O-glycosylations was found both in spectrinN and spectrinVL, enhanced sialylation was predominantly induced in spectrinVL. Sialic acids accounted for approximately 1.25 kDa mass of the 60 kDa polypeptide. The demonstration of a few identified sialylated tryptic fragments of α- and β-spectrinVL confirmed the presence of terminal sialic acids. Molecular modelling studies of spectrin suggest that a sugar moiety can fit into the potential glycosylation sites. Interestingly, highly sialylated spectrinVL showed decreased binding with spectrin-depleted inside-out membrane vesicles of normal erythrocytes compared to spectrinN suggesting functional abnormality. Taken together this is the first report of glycosylated eythrocytic spectrin in normal erythrocytes and its enhanced sialylation in RBCVL. The enhanced sialylation of this cytoskeleton protein is possibly related to the fragmentation of spectrinVL as evidenced by the presence of an additional 60 kDa fragment, absent in spectrinN which possibly affects the biology of RBCVL linked to both severe distortion of erythrocyte development and impairment of erythrocyte membrane integrity and may provide an explanation for their sensitivity to hemolysis and anemia in VL patients
Partial deficiency of erythrocyte spectrin in hereditary spherocytosis.
Hereditary spherocytosis (HS) is a common, clinically heterogeneous haemolytic anaemia in which the primary erythrocyte defect is believed to be some abnormality in the spectrin-actin membrane skeleton, leading to loss of surface membrane. Recessively inherited spectrin deficiency with extreme erythrocyte fragility and spherocytosis has been identified in certain mutant mice and two severely anaemic humans. Although suspected, deficiency of spectrin has not been demonstrated in less severe forms of human HS. We not report the quantitation of erythrocytes spectrin by radioimmunoassay. We found that normal erythrocytes contained 240,000 copies of spectrin heterodimer, whereas erythrocytes from 14 patients with a variety of types of HS were all partially deficient in spectrin (range 74,000-200,000 copies), the magnitude of the deficiency correlating with the severity of the disease. Spectrin deficiency of varying degrees is common in HS and probably represents the principal structural defect leading to loss of surface membrane