18 research outputs found

    Nuclear and mitochondrial apoptotic pathways of p53

    Get PDF
    AbstractIn contrast to p53-mediated cell cycle arrest, the mechanisms of p53-mediated apoptosis in response to cellular stresses such as DNA damage, hypoxia and oncogenic signals still remain poorly understood. Elucidating these pathways is all the more pressing since there is good evidence that the activation of apoptosis rather than cell cycle arrest is crucial in p53 tumor suppression. Moreover, the therapeutic interest in p53 as the molecular target of anticancer intervention rests mainly on its powerful apoptotic capability. This puzzling elusiveness suggests that p53 not only engages a plethora of downstream pathways but itself might possess a biochemical flexibility that goes beyond its role as a mere transcription factor. Recent evidence of a direct pro-apoptotic role of p53 protein at mitochondria suggests a synergistic effect with its transcriptional activation function and brings an unexpected new level of complexity into p53 apoptotic pathways

    ΔNp73, A Dominant-Negative Inhibitor of Wild-type p53 and TAp73, Is Up-regulated in Human Tumors

    Get PDF
    p73 has significant homology to p53. However, tumor-associated up-regulation of p73 and genetic data from human tumors and p73-deficient mice exclude a classical Knudson-type tumor suppressor role. We report that the human TP73 gene generates an NH2 terminally truncated isoform. ΔNp73 derives from an alternative promoter in intron 3 and lacks the transactivation domain of full-length TAp73. ΔNp73 is frequently overexpressed in a variety of human cancers, but not in normal tissues. ΔNp73 acts as a potent transdominant inhibitor of wild-type p53 and transactivation-competent TAp73. ΔNp73 efficiently counteracts transactivation function, apoptosis, and growth suppression mediated by wild-type p53 and TAp73, and confers drug resistance to wild-type p53 harboring tumor cells. Conversely, down-regulation of endogenous ΔNp73 levels by antisense methods alleviates its suppressive action and enhances p53- and TAp73-mediated apoptosis. ΔNp73 is complexed with wild-type p53, as demonstrated by coimmunoprecipitation from cultured cells and primary tumors. Thus, ΔNp73 mediates a novel inactivation mechanism of p53 and TAp73 via a dominant-negative family network. Deregulated expression of ΔNp73 can bestow oncogenic activity upon the TP73 gene by functionally inactivating the suppressor action of p53 and TAp73. This trait might be selected for in human cancers

    Disrupting the p53-mdm2 interaction as a potential therapeutic modality

    No full text
    P53 and mdm2 are linked to each other through a negative feedback loop. P53 transactivates mdm2, but mdm2, in turn, is a major opponent of p53. Mdm2 promotes p53 degradation through a ubiquitin-dependent pathway on 26S proteasomes and is thought to be largely responsible for the very low levels of p53 protein in unstressed cells. The rationale for targeting the p53-mdm2 interaction therapeutically lies in the ability to activate p53 in all those tumors that retain wild type p53. Copyright 2000 Harcourt Publishers Ltd

    Hypoxia death stimulus induces translocation of p53 protein to mitochondria: Detection by immunofluorescence on whole cells

    Get PDF
    Evidence suggests that p53 induces cell death by a dual mode of action involving activation of target genes and transcriptionally independent direct signaling. Mitochondria are major signal transducers in apoptosis. We recently discovered that a fraction of induced p53 protein rapidly translocates to mitochondria during p53-dependent apoptosis, but not during p53-independent apoptosis or p53-mediated cell cycle arrest. Importantly, specific targeting of p53 to mitochondria was sufficient to induce apoptosis in p53-deficient tumor cells. This led us to propose a model where p53 exerts a direct apoptogenic role at the mitochondria, thereby enhancing the transcription-dependent apoptosis of p53. Here we show for the first time that mitochondrial localization of endogenous p53 can be visualized by immunofluorescence of whole cells when stressed by hypoxic conditions. Suborganellar localization by limited trypsin digestion of isolated mitochondria from stressed cells suggests that a significant amount of mitochondrial p53 is located at the surface of the organelle. This mitochondrial association can be reproduced in vitro with purified p53. Together, our data provide further evidence for an apoptogenic signaling role of p53 protein in vivo at the level of the mitochondria
    corecore