2 research outputs found

    Susceptibility of Continual Learning Against Adversarial Attacks

    Full text link
    Recent continual learning approaches have primarily focused on mitigating catastrophic forgetting. Nevertheless, two critical areas have remained relatively unexplored: 1) evaluating the robustness of proposed methods and 2) ensuring the security of learned tasks. This paper investigates the susceptibility of continually learned tasks, including current and previously acquired tasks, to adversarial attacks. Specifically, we have observed that any class belonging to any task can be easily targeted and misclassified as the desired target class of any other task. Such susceptibility or vulnerability of learned tasks to adversarial attacks raises profound concerns regarding data integrity and privacy. To assess the robustness of continual learning approaches, we consider continual learning approaches in all three scenarios, i.e., task-incremental learning, domain-incremental learning, and class-incremental learning. In this regard, we explore the robustness of three regularization-based methods, three replay-based approaches, and one hybrid technique that combines replay and exemplar approaches. We empirically demonstrated that in any setting of continual learning, any class, whether belonging to the current or previously learned tasks, is susceptible to misclassification. Our observations identify potential limitations of continual learning approaches against adversarial attacks and highlight that current continual learning algorithms could not be suitable for deployment in real-world settings.Comment: 18 pages, 13 figure

    Comparative Analysis of State-of-the-Art Deep Learning Models for Detecting COVID-19 Lung Infection from Chest X-Ray Images

    Full text link
    The ongoing COVID-19 pandemic has already taken millions of lives and damaged economies across the globe. Most COVID-19 deaths and economic losses are reported from densely crowded cities. It is comprehensible that the effective control and prevention of epidemic/pandemic infectious diseases is vital. According to WHO, testing and diagnosis is the best strategy to control pandemics. Scientists worldwide are attempting to develop various innovative and cost-efficient methods to speed up the testing process. This paper comprehensively evaluates the applicability of the recent top ten state-of-the-art Deep Convolutional Neural Networks (CNNs) for automatically detecting COVID-19 infection using chest X-ray images. Moreover, it provides a comparative analysis of these models in terms of accuracy. This study identifies the effective methodologies to control and prevent infectious respiratory diseases. Our trained models have demonstrated outstanding results in classifying the COVID-19 infected chest x-rays. In particular, our trained models MobileNet, EfficentNet, and InceptionV3 achieved a classification average accuracy of 95\%, 95\%, and 94\% test set for COVID-19 class classification, respectively. Thus, it can be beneficial for clinical practitioners and radiologists to speed up the testing, detection, and follow-up of COVID-19 cases
    corecore