68 research outputs found
Modelling of a Flexible Manoeuvring System Using ANFIS Techniques
The increased utilization of flexible structure systems,
such as flexible manipulators and flexible aircraft in various applications, has been motivated by the requirements of industrial automation in recent years. Robust optimal control of flexible structures with active feedback techniques requires accurate models of the base structure, and knowledge of uncertainties of these models. Such information may not be easy to acquire for certain systems. An adaptive Neuro-Fuzzy inference Systems (ANFIS) use the learning ability of neural networks to adjust the
membership function parameters in a fuzzy inference system.
Hence, modelling using ANFIS is preferred in such applications. This paper discusses modelling of a nonlinear flexible system namely a twin rotor multi-input multi-output system using ANFIS techniques. Pitch and yaw motions are modelled and tested by
model validation techniques. The obtained results indicate that ANFIS modelling is powerful to facilitate modelling of complex systems associated with nonlinearity and uncertainty
Accommodating repair actions into gas turbine prognostics
Elements of gas turbine degradation, such as compressor
fouling, are recoverable through maintenance actions like
compressor washing. These actions increase the usable engine
life and optimise the performance of the gas turbine.
However, these maintenance actions are performed by a separate
organization to those undertaking fleet management operations,
leading to significant uncertainty in the maintenance
state of the asset. The uncertainty surrounding maintenance
actions impacts prognostic efficacy. In this paper, we adopt
Bayesian on-line change point detection to detect the compressor
washing events. Then, the event detection information
is used as an input to a prognostic algorithm, advising an
update to the estimation of remaining useful life. To illustrate
the capability of the approach, we demonstrated our on-line
Bayesian change detection algorithms on synthetic and real
aircraft engine service data, in order to identify the compressor
washing events for a gas turbine and thus provide demonstrably
improved prognosis
ennemi : Non-linear correlation detection with mutual information
We present ennemi, a Python package for correlation analysis based on mutual information (MI). MI is a measure of relationship between variables. Unlike Pearson correlation it is valid also for non-linear relationships, yet in the linear case the two are equivalent. The effect of other variables can be removed like with partial correlation, with the same equivalence. These features make MI a better correlation measure for exploratory analysis of many variable pairs. Our package provides methods for common correlation analysis tasks using MI. It is scalable, integrated with the Python data science ecosystem, and requires minimal configuration. (C) 2021 The Authors. Published by Elsevier B.V.Peer reviewe
Sensitivity Analysis for Predicting Sub-Micron Aerosol Concentrations Based on Meteorological Parameters
Sub-micron aerosols are a vital air pollutant to be measured because they pose health effects. These particles are quantified as particle number concentration (PN). However, PN measurements are not always available in air quality measurement stations, leading to data scarcity. In order to compensate this, PN modeling needs to be developed. This paper presents a PN modeling framework using sensitivity analysis tested on a one year aerosol measurement campaign conducted in Amman, Jordan. The method prepares a set of different combinations of all measured meteorological parameters to be descriptors of PN concentration. In this case, we resort to artificial neural networks in the forms of a feed-forward neural network (FFNN) and a time-delay neural network (TDNN) as modeling tools, and then, we attempt to find the best descriptors using all these combinations as model inputs. The best modeling tools are FFNN for daily averaged data (with R 2 = 0.77 ) and TDNN for hourly averaged data (with R 2 = 0.66 ) where the best combinations of meteorological parameters are found to be temperature, relative humidity, pressure, and wind speed. As the models follow the patterns of diurnal cycles well, the results are considered to be satisfactory. When PN measurements are not directly available or there are massive missing PN concentration data, PN models can be used to estimate PN concentration using available measured meteorological parameters
Sensitivity Analysis for Predicting Sub-Micron Aerosol Concentrations Based on Meteorological Parameters
Sub-micron aerosols are a vital air pollutant to be measured because they pose health effects. These particles are quantified as particle number concentration (PN). However, PN measurements are not always available in air quality measurement stations, leading to data scarcity. In order to compensate this, PN modeling needs to be developed. This paper presents a PN modeling framework using sensitivity analysis tested on a one year aerosol measurement campaign conducted in Amman, Jordan. The method prepares a set of different combinations of all measured meteorological parameters to be descriptors of PN concentration. In this case, we resort to artificial neural networks in the forms of a feed-forward neural network (FFNN) and a time-delay neural network (TDNN) as modeling tools, and then, we attempt to find the best descriptors using all these combinations as model inputs. The best modeling tools are FFNN for daily averaged data (with R 2 = 0.77 ) and TDNN for hourly averaged data (with R 2 = 0.66 ) where the best combinations of meteorological parameters are found to be temperature, relative humidity, pressure, and wind speed. As the models follow the patterns of diurnal cycles well, the results are considered to be satisfactory. When PN measurements are not directly available or there are massive missing PN concentration data, PN models can be used to estimate PN concentration using available measured meteorological parameters
Exploring Non-Linear Dependencies in Atmospheric Data with Mutual Information
Relations between atmospheric variables are often non-linear, which complicates research efforts to explore and understand multivariable datasets. We describe a mutual information approach to screen for the most significant associations in this setting. This method robustly detects linear and non-linear dependencies after minor data quality checking. Confounding factors and seasonal cycles can be taken into account without predefined models. We present two case studies of this method. The first one illustrates deseasonalization of a simple time series, with results identical to the classical method. The second one explores associations in a larger dataset of many variables, some of them lognormal (trace gas concentrations) or circular (wind direction). The examples use our Python package ‘ennemi’
An Optimal Stacked Ensemble Deep Learning Model for Predicting Time-Series Data Using a Genetic Algorithm—An Application for Aerosol Particle Number Concentrations
Time-series prediction is an important area that inspires numerous research disciplines for various applications, including air quality databases. Developing a robust and accurate model for time-series data becomes a challenging task, because it involves training different models and optimization. In this paper, we proposed and tested three machine learning techniques—recurrent neural networks (RNN), heuristic algorithm and ensemble learning—to develop a predictive model for estimating atmospheric particle number concentrations in the form of a time-series database. Here, the RNN included three variants—Long-Short Term Memory, Gated Recurrent Network, and Bi-directional Recurrent Neural Network—with various configurations. A Genetic Algorithm (GA) was then used to find the optimal time-lag in order to enhance the model’s performance. The optimized models were used to construct a stacked ensemble model as well as to perform the final prediction. The results demonstrated that the time-lag value can be optimized by using the heuristic algorithm; consequently, this improved the model prediction accuracy. Further improvement can be achieved by using ensemble learning that combines several models for better performance and more accurate predictions
An Optimal Stacked Ensemble Deep Learning Model for Predicting Time-Series Data Using a Genetic Algorithm—An Application for Aerosol Particle Number Concentrations
Time-series prediction is an important area that inspires numerous research disciplines for various applications, including air quality databases. Developing a robust and accurate model for time-series data becomes a challenging task, because it involves training different models and optimization. In this paper, we proposed and tested three machine learning techniques—recurrent neural networks (RNN), heuristic algorithm and ensemble learning—to develop a predictive model for estimating atmospheric particle number concentrations in the form of a time-series database. Here, the RNN included three variants—Long-Short Term Memory, Gated Recurrent Network, and Bi-directional Recurrent Neural Network—with various configurations. A Genetic Algorithm (GA) was then used to find the optimal time-lag in order to enhance the model’s performance. The optimized models were used to construct a stacked ensemble model as well as to perform the final prediction. The results demonstrated that the time-lag value can be optimized by using the heuristic algorithm; consequently, this improved the model prediction accuracy. Further improvement can be achieved by using ensemble learning that combines several models for better performance and more accurate predictions
Deep Learning in Energy Modeling: Application in Smart Buildings With Distributed Energy Generation
Buildings are responsible for 33% of final energy consumption, and 40% of direct and indirect CO2 emissions globally. While energy consumption is steadily rising globally, managing building energy utilization by on-site renewable energy generation can help responding to this demand. This paper proposes a deep learning method based on a discrete wavelet transformation and long short-term memory method (DWT-LSTM) and a scheduling framework for the integrated modelling and management of energy demand and supply for buildings. This method analyzes several factors including electricity price, uncertainty in climatic factors, availability of renewable energy sources (wind and solar), energy consumption patterns in buildings, and the non-linear relationships between these parameters on hourly, daily, weekly and monthly intervals. The method enables monitoring and controlling renewable energy generation, the share of energy imports from the grid, employment of saving strategy based on the user priority list, and energy storage management to minimize the reliance on the grid and electricity cost, especially during the peak hours. The results demonstrate that the proposed method can forecast building energy demand and energy supply with a high level of accuracy, showing a 3.63-8.57% error range in hourly data prediction for one month ahead. The combination of the deep learning forecasting, energy storage, and scheduling algorithm enables reducing annual energy import from the grid by 84%, which offers electricity cost savings by 87%. Finally, two smart active buildings configurations are financially analyzed for the next thirty years. Based on the results, the proposed smart building with solar Photo-Voltaic (PV), wind turbine, inverter, and 40.5 kWh energy storage has a financial breakeven point after 9 years with wind turbine and 8 years without it. This implies that implementing wind turbines in the proposed building is not financially beneficial.Peer reviewe
- …