3,865 research outputs found

    Standard Solar models in the Light of New Helioseismic Constraints II. Mixing Below the Convective Zone

    Full text link
    In previous work, we have shown that recent updated standard solar models cannot reproduce the radial profile of the sound speed at the base of the convective zone (CZ) and fail to predict the Li7 depletion. In parallel, helioseismology has shown that the transition from differential rotation in the CZ to almost uniform rotation in the radiative solar interior occurs in a shallow layer called the tachocline. This layer is presumably the seat of large scale circulation and of turbulent motions. Here, we introduce a macroscopic transport term in the structure equations, which is based on a hydrodynamical description of the tachocline proposed by Spiegel and Zahn, and we calculate the mixing induced within this layer. We discuss the influence of different parameters that represent the tachocline thickness, the Brunt-Vaissala frequency at the base of the CZ, and the time dependence of this mixing process along the Sun's evolution. We show that the introduction of such a process inhibits the microscopic diffusion by about 25%. Starting from models including a pre-main sequence evolution, we obtain: a) a good agreement with the observed photospheric chemical abundance of light elements such as He3, He4, Li7 and Be9, b) a smooth composition gradient at the base of the CZ, and c) a significant improvement of the sound speed square difference between the seismic sun and the models in this transition region, when we allow the phostospheric heavy element abundance to adjust, within the observational incertitude, due to the action of this mixing process. The impact on neutrino predictions is also discussed.Comment: 15 pages, 7 figures, to be published in ApJ (used emulateapj style for latex2e). New email for A. S. Brun: [email protected]

    Dynamical Tide in Solar-Type Binaries

    Get PDF
    Circularization of late-type main-sequence binaries is usually attributed to turbulent convection, while that of early-type binaries is explained by resonant excitation of g modes. We show that the latter mechanism operates in solar-type stars also and is at least as effective as convection, despite inefficient damping of g modes in the radiative core. The maximum period at which this mechanism can circularize a binary composed of solar-type stars in 10 Gyr is as low as 3 days, if the modes are damped by radiative diffusion only and g-mode resonances are fixed; or as high as 6 days, if one allows for evolution of the resonances and for nonlinear damping near inner turning points. Even the larger theoretical period falls short of the observed transition period by a factor two.Comment: 17 pages, 2 postscript figures, uses aaspp4.sty. Submitted to Ap

    Whispering Spirits : Reverie

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-ps/1277/thumbnail.jp

    Polar confinement of the Sun's interior magnetic field by laminar magnetostrophic flow

    Full text link
    The global-scale interior magnetic field needed to account for the Sun's observed differential rotation can be effective only if confined below the convection zone in all latitudes, including the polar caps. Axisymmetric nonlinear MHD solutions are obtained showing that such confinement can be brought about by a very weak downwelling flow U~10^{-5}cm/s over each pole. Such downwelling is consistent with the helioseismic evidence. All three components of the magnetic field decay exponentially with altitude across a thin "magnetic confinement layer" located at the bottom of the tachocline. With realistic parameter values, the thickness of the confinement layer ~10^{-3} of the Sun's radius. Alongside baroclinic effects and stable thermal stratification, the solutions take into account the stable compositional stratification of the helium settling layer, if present as in today's Sun, and the small diffusivity of helium through hydrogen, chi. The small value of chi relative to magnetic diffusivity produces a double boundary-layer structure in which a "helium sublayer" of smaller vertical scale is sandwiched between the top of the helium settling layer and the rest of the confinement layer. Solutions are obtained using both semi-analytical and purely numerical, finite-difference techniques. The confinement-layer flows are magnetostrophic to excellent approximation. More precisely, the principal force balances are between Lorentz, Coriolis, pressure-gradient and buoyancy forces, with relative accelerations and viscous forces negligible. This is despite the kinematic viscosity being somewhat greater than chi. We discuss how the confinement layers at each pole might fit into a global dynamical picture of the solar tachocline. That picture, in turn, suggests a new insight into the early Sun and into the longstanding enigma of solar lithium depletion.Comment: Accepted by JFM. 36 pages, 10 figure

    CP and related phenomena in the context of Stellar Evolution

    Full text link
    We review the interaction in intermediate and high mass stars between their evolution and magnetic and chemical properties. We describe the theory of Ap-star `fossil' fields, before touching on the expected secular diffusive processes which give rise to evolution of the field. We then present recent results from a spectropolarimetric survey of Herbig Ae/Be stars, showing that magnetic fields of the kind seen on the main-sequence already exist during the pre-main sequence phase, in agreement with fossil field theory, and that the origin of the slow rotation of Ap/Bp stars also lies early in the pre-main sequence evolution; we also present results confirming a lack of stars with fields below a few hundred gauss. We then seek which macroscopic motions compete with atomic diffusion in determining the surface abundances of AmFm stars. While turbulent transport and mass loss, in competition with atomic diffusion, are both able to explain observed surface abundances, the interior abundance distribution is different enough to potentially lead to a test using asterosismology. Finally we review progress on the turbulence-driving and mixing processes in stellar radiative zones.Comment: Proceedings of IAU GA in Rio, JD4 on Ap stars; 10 pages, 7 figure

    Core-Collapse Simulations of Rotating Stars

    Get PDF
    We present the results from a series of two-dimensional core-collapse simulations using a rotating progenitor star. We find that the convection in these simulations is less vigorous because a) rotation weakens the core bounce which seeds the neutrino-driven convection and b) the angular momentum profile in the rotating core stabilizes against convection. The limited convection leads to explosions which occur later and are weaker than the explosions produced from the collapse of non-rotating cores. However, because the convection is constrained to the polar regions, when the explosion occurs, it is stronger along the polar axis. This asymmetric explosion can explain the polarization measurements of core-collapse supernovae. These asymmetries also provide a natural mechanism to mix the products of nucleosynthesis out into the helium and hydrogen layers of the star. We also discuss the role the collapse of these rotating stars play on the generation of magnetic fields and neutron star kicks. Given a range of progenitor rotation periods, we predict a range of supernova energies for the same progenitor mass. The critical mass for black hole formation also depends upon the rotation speed of the progenitor.Comment: 16 pages text + 13 figures, submitted to Ap

    Angular momentum extraction by gravity waves in the Sun

    Get PDF
    We review the behavior of the oscillating shear layer produced by gravity waves below the surface convection zone of the Sun. We show that, under asymmetric filtering produced by this layer, gravity waves of low spherical order, which are stochastically excited at the base of the convection zone of late type stars, can extract angular momentum from their radiative interior. The time-scale for this momentum extraction in a Sun-like star is of the order of 10^7 years. The process is particularly efficient in the central region, and it could produce there a slowly rotating core.Comment: 9 pages, 3 figues, accepted by Astrophysical Journal Letter, 26 June 200

    Detecting the Rise and Fall of 21 cm Fluctuations with the Murchison Widefield Array

    Full text link
    We forecast the sensitivity with which the Murchison Widefield Array (MWA) can measure the 21 cm power spectrum of cosmic hydrogen, using radiative transfer simulations to model reionization and the 21 cm signal. The MWA is sensitive to roughly a decade in scale (wavenumbers of k ~ 0.1 - 1 h Mpc^{-1}), with foreground contamination precluding measurements on larger scales, and thermal detector noise limiting the small scale sensitivity. This amounts primarily to constraints on two numbers: the amplitude and slope of the 21 cm power spectrum on the scales probed. We find, however, that the redshift evolution in these quantities can yield important information about reionization. Although the power spectrum differs substantially across plausible models, a generic prediction is that the amplitude of the 21 cm power spectrum on MWA scales peaks near the epoch when the intergalactic medium (IGM) is ~ 50% ionized. Moreover, the slope of the 21 cm power spectrum on MWA scales flattens as the ionization fraction increases and the sizes of the HII regions grow. Considering detection sensitivity, we show that the optimal MWA antenna configuration for power spectrum measurements would pack all 500 antenna tiles as close as possible in a compact core. The MWA is sensitive enough in its optimal configuration to measure redshift evolution in the slope and amplitude of the 21 cm power spectrum. Detecting the characteristic redshift evolution of our models will confirm that observed 21 cm fluctuations originate from the IGM, and not from foregrounds, and provide an indirect constraint on the volume-filling factor of HII regions during reionization. After two years of observations under favorable conditions, the MWA can constrain the filling factor at an epoch when ~ 0.5 to within roughly +/- 0.1 at 2-sigma.Comment: 14 pages, 9 figures, submitted to Ap

    Energy Flow in Acoustic Black Holes

    Full text link
    We present the results of an analysis of superradiant energy flow due to scalar fields incident on an acoustic black hole. In addition to providing independent confirmation of the recent results in [5], we determine in detail the profile of energy flow everywhere outside the horizon. We confirm explicitly that in a suitable frame the energy flow is inward at the horizon and outward at infinity, as expected on physical grounds.Comment: 8 pages, 9 figures, Comments added to discussion of energy flow and introductory section abbreviate
    corecore