2,948 research outputs found
SU(3) techniques for angular momentum projected matrix elements in multiâcluster problems
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87456/2/518_1.pd
Detection and resolution of normative conflicts in multi-agent systems : a literature survey
Peer reviewedPostprin
Tidal dissipation in rotating giant planets
[Abridged] Tides may play an important role in determining the observed
distributions of mass, orbital period, and eccentricity of the extrasolar
planets. In addition, tidal interactions between giant planets in the solar
system and their moons are thought to be responsible for the orbital migration
of the satellites, leading to their capture into resonant configurations. We
treat the underlying fluid dynamical problem with the aim of determining the
efficiency of tidal dissipation in gaseous giant planets. In cases of interest,
the tidal forcing frequencies are comparable to the spin frequency of the
planet but small compared to its dynamical frequency. We therefore study the
linearized response of a slowly and possibly differentially rotating planet to
low-frequency tidal forcing. Convective regions of the planet support inertial
waves, while any radiative regions support generalized Hough waves. We present
illustrative numerical calculations of the tidal dissipation rate and argue
that inertial waves provide a natural avenue for efficient tidal dissipation in
most cases of interest. The resulting value of Q depends in a highly erratic
way on the forcing frequency, but we provide evidence that the relevant
frequency-averaged dissipation rate may be asymptotically independent of the
viscosity in the limit of small Ekman number. In short-period extrasolar
planets, if the stellar irradiation of the planet leads to the formation of a
radiative outer layer that supports generalized Hough modes, the tidal
dissipation rate can be enhanced through the excitation and damping of these
waves. These dissipative mechanisms offer a promising explanation of the
historical evolution and current state of the Galilean satellites as well as
the observed circularization of the orbits of short-period extrasolar planets.Comment: 74 pages, 12 figures, submitted to The Astrophysical Journa
Diurnal and annual variations of meteor rates at the arctic circle
Meteors are an important source for (a) the metal atoms of the upper atmosphere metal layers and (b) for condensation nuclei, the existence of which are a prerequisite for the formation of noctilucent cloud particles in the polar mesopause region. For a better understanding of these phenomena, it would be helpful to know accurately the annual and diurnal variations of meteor rates. So far, these rates have been little studied at polar latitudes. Therefore we have used the 33 MHz meteor radar of the ALOMAR observatory at 69° N to measure the meteor rates at this location for two full annual cycles. This site, being within 3° of the Arctic circle, offers in addition an interesting capability: The axis of its antenna field points (almost) towards the North ecliptic pole once each day of the year. In this particular viewing direction, the radar monitors the meteoroid influx from (almost) the entire ecliptic Northern hemisphere. <P style='line-height: 20px;'> We report on the observed diurnal variations (averaged over one month) of meteor rates and their significant alterations throughout the year. The ratio of maximum over minimum meteor rates throughout one diurnal cycle is in January and February about 5, from April through December 2.3±0.3. If compared with similar measurements at mid-latitudes, our expectation, that the amplitude of the diurnal variation is to decrease towards the North pole, is not really borne out. <P style='line-height: 20px;'> Observations with the antenna axis pointing towards the North ecliptic pole showed that the rate of deposition of meteoric dust is substantially larger during the Arctic NLC season than the annual mean deposition rate. The daylight meteor showers of the Arietids, Zeta Perseids, and Beta Taurids supposedly contribute considerably to the June maximum of meteor rates. We note, though, that with the radar antenna pointing as described above, all three meteor radiants are close to the local horizon but all three radiants were detected
Simulations of core convection in rotating A-type stars: Differential rotation and overshooting
We present the results of 3--D simulations of core convection within A-type
stars of 2 solar masses, at a range of rotation rates. We consider the inner
30% by radius of such stars, thereby encompassing the convective core and some
of the surrounding radiative envelope. We utilize our anelastic spherical
harmonic (ASH) code, which solves the compressible Navier-Stokes equations in
the anelastic approximation, to examine highly nonlinear flows that can span
multiple scale heights. The cores of these stars are found to rotate
differentially, with central cylindrical regions of strikingly slow rotation
achieved in our simulations of stars whose convective Rossby number (R_{oc}) is
less than unity. Such differential rotation results from the redistribution of
angular momentum by the nonlinear convection that strongly senses the overall
rotation of the star. Penetrative convective motions extend into the overlying
radiative zone, yielding a prolate shape (aligned with the rotation axis) to
the central region in which nearly adiabatic stratification is achieved. This
is further surrounded by a region of overshooting motions, the extent of which
is greater at the equator than at the poles, yielding an overall spherical
shape to the domain experiencing at least some convective mixing. We assess the
overshooting achieved as the stability of the radiative exterior is varied, and
the weak circulations that result in that exterior. The convective plumes serve
to excite gravity waves in the radiative envelope, ranging from localized
ripples of many scales to some remarkable global resonances.Comment: 48 pages, 16 figures, some color. Accepted to Astrophys. J. Color
figures compressed with appreciable loss of quality; a PDF of the paper with
better figures is available at
http://lcd-www.colorado.edu/~brownim/core_convectsep24.pd
Equipotential Surfaces and Lagrangian points in Non-synchronous, Eccentric Binary and Planetary Systems
We investigate the existence and properties of equipotential surfaces and
Lagrangian points in non-synchronous, eccentric binary star and planetary
systems under the assumption of quasi-static equilibrium. We adopt a binary
potential that accounts for non-synchronous rotation and eccentric orbits, and
calculate the positions of the Lagrangian points as functions of the mass
ratio, the degree of asynchronism, the orbital eccentricity, and the position
of the stars or planets in their relative orbit. We find that the geometry of
the equipotential surfaces may facilitate non-conservative mass transfer in
non-synchronous, eccentric binary star and planetary systems, especially if the
component stars or planets are rotating super-synchronously at the periastron
of their relative orbit. We also calculate the volume-equivalent radius of the
Roche lobe as a function of the four parameters mentioned above. Contrary to
common practice, we find that replacing the radius of a circular orbit in the
fitting formula of Eggleton (1983) with the instantaneous distance between the
components of eccentric binary or planetary systems does not always lead to a
good approximation to the volume-equivalent radius of the Roche-lobe. We
therefore provide generalized analytic fitting formulae for the
volume-equivalent Roche lobe radius appropriate for non-synchronous, eccentric
binary star and planetary systems. These formulae are accurate to better than
1% throughout the relevant 2-dimensional parameter space that covers a dynamic
range of 16 and 6 orders of magnitude in the two dimensions.Comment: 12 pages, 10 figures, 2 Tables, Accepted by the Astrophysical Journa
On the Correlation between the Magnetic Activity Levels, the Metallicities and the Radii of Low-Mass Stars
The recent burst in the number of radii measurements of very low-mass stars
from eclipsing binaries and interferometry of single stars has opened more
questions about what can be causing the discrepancy between the observed radii
and the ones predicted by the models. The two main explanations being proposed
are a correlation between the radius of the stars and their activity levels or
their metallicities. This paper presents a study of such correlations using all
the data published to date. The study also investigates correlations between
the radii deviation from the models and the masses of the stars. There is no
clear correlation between activity level and radii for the single stars in the
sample. Those single stars are slow rotators with typical velocities v_rot sini
< 3.0 km s^-1. A clear correlation however exists in the case of the faster
rotating members of binaries. This result is based on the of X-ray emission
levels of the stars. There also appears to be an increase in the deviation of
the radii of single stars from the models as a function of metallicity, as
previously indicated by Berger et al. (2006). The stars in binaries do not seem
to follow the same trend. Finally, the Baraffe et al. (1998) models reproduce
well the radius observations below 0.30-0.35Msun, where the stars become fully
convective, although this result is preliminary since almost all the sample
stars in that mass range are slow rotators and metallicities have not been
measured for most of them. The results in this paper indicate that stellar
activity and metallicity play an important role on the determination of the
radius of very low-mass stars, at least above 0.35Msun.Comment: 22 pages, 4 figures. Accepted for publication on Ap
Two-Dimensional Hydrodynamics of Pre-Core Collapse: Oxygen Shell Burning
By direct hydrodynamic simulation, using the Piecewise Parabolic Method (PPM)
code PROMETHEUS, we study the properties of a convective oxygen burning shell
in a SN 1987A progenitor star prior to collapse. The convection is too
heterogeneous and dynamic to be well approximated by one-dimensional
diffusion-like algorithms which have previously been used for this epoch.
Qualitatively new phenomena are seen.
The simulations are two-dimensional, with good resolution in radius and
angle, and use a large (90-degree) slice centered at the equator. The
microphysics and the initial model were carefully treated. Many of the
qualitative features of previous multi-dimensional simulations of convection
are seen, including large kinetic and acoustic energy fluxes, which are not
accounted for by mixing length theory. Small but significant amounts of
carbon-12 are mixed non-uniformly into the oxygen burning convection zone,
resulting in hot spots of nuclear energy production which are more than an
order of magnitude more energetic than the oxygen flame itself. Density
perturbations (up to 8%) occur at the `edges' of the convective zone and are
the result of gravity waves generated by interaction of penetrating flows into
the stable region. Perturbations of temperature and electron fraction at the
base of the convective zone are of sufficient magnitude to create angular
inhomogeneities in explosive nucleosynthesis products, and need to be included
in quantitative estimates of yields. Combined with the plume-like velocity
structure arising from convection, the perturbations will contribute to the
mixing of nickel-56 throughout supernovae envelopes. Runs of different
resolution, and angular extent, were performed to test the robustness of theseComment: For mpeg movies of these simulations, see
http://www.astrophysics.arizona.edu/movies.html Submitted to the
Astrophysical Journa
- âŠ