180 research outputs found

    Ni3TeO6 - a collinear antiferromagnet with ferromagnetic honeycomb planes

    Get PDF
    We report a comprehensive study of magnetic properties of Ni3TeO6. The system crystallizes in a noncentrosymmetric rhombohedral lattice, space group R3. There are three differently coordinated Ni atoms in the unit cell. Two of them form an almost planar honeycomb lattice, while the third one is placed between the layers. Magnetization and specific heat measurements revealed a single magnetic ordering at TN = 52 K. Below TN the susceptibility with the magnetic field parallel to the c-axis drops towards zero while the perpendicular susceptibility remains constant, a characteristic of antiferromagnetic materials. Neutron diffraction confirmed that the system is antiferromagnet below TN with ferromagnetic ab-planes stacked antiferromagnetically along the c-axis. All Ni moments are in the S = 1 spin state and point along the c-axis.Comment: accepted for publication in Journal of Physics Condensed Matte

    Incommensurate magnetic ordering in Cu2Te2O5X2 (X=Cl, Br) studied by single crystal neutron diffraction

    Full text link
    Polarized and unpolarized neutron diffraction studies have been carried out on single crystals of the coupled spin tetrahedra systems Cu2Te2O5X2 (X=Cl, Br). A model of the magnetic structure associated with the propagation vectors k'Cl ~ -0.150,0.422,1/2 and k'Br ~ -0.172,0.356,1/2 and stable below TN=18 K for X=Cl and TN=11 K for X=Br is proposed. A feature of the model, common to both the bromide and chloride, is a canted coplanar motif for the 4 Cu2+ spins on each tetrahedron which rotates on a helix from cell to cell following the propagation vector. The Cu2+magnetic moment determined for X=Br, 0.395(5)muB, is significantly less than for X=Cl, 0.88(1)muB at 2K. The magnetic structure of the chloride associated with the wave-vector k' differs from that determined previously for the wave vector k~0.150,0.422,1/2 [O. Zaharko et.al. Phys. Rev. Lett. 93, 217206 (2004)]

    Evolution of magnetic states in frustrated diamond lattice antiferromagnetic Co(Al1-xCox)2O4 spinels

    Get PDF
    Using neutron powder diffraction and Monte-Carlo simulations we show that a spin-liquid regime emerges at $all compositions in the diamond-lattice antiferromagnets Co(Al1-xCox)2O4. This spin-liquid regime induced by frustration due to the second-neighbour exchange coupling J2, is gradually superseded by antiferromagnetic collinear long-range order (k=0) at low temperatures. Upon substitution of Al3+ by Co3+ in the octahedral B-site the temperature range occupied by the spin-liquid regime narrows and TN increases. To explain the experimental observations we considered magnetic anisotropy D or third-neighbour exchange coupling J3 as degeneracy-breaking perturbations. We conclude that Co(Al1-xCox)2O4 is below the theoretical critical point J2/J1=1/8, and that magnetic anisotropy assists in selecting a collinear long-range ordered ground state, which becomes more stable with increasing x due to a higher efficiency of O-Co3+-O as an interaction path compared to O-Al3+-O

    Incommensurate magnetic ordering in Cu2Te2O5X2Cu_2 Te_2 O_5 X_2 (X=Cl,Br) studied by neutron diffraction

    Full text link
    We present the results of the first neutron powder and single crystal diffraction studies of the coupled spin tetrahedra systems {\CuTeX} (X=Cl, Br). Incommensurate antiferromagnetic order with the propagation vectors {\bf{k}_{Cl}}\approx[0.150,0.422,\half], {\bf{k}_{Br}}\approx[0.158,0.354,\half] sets in below TNT_{N}=18 K for X=Cl and 11 K for X=Br. No simple collinear antiferromagnetic or ferromagnetic arrangements of moments within Cu2+{}^{2+} tetrahedra fit these observations. Fitting the diffraction data to more complex but physically reasonable models with multiple helices leads to a moment of 0.67(1)ÎŒB\mu_B/Cu2+{}^{2+} at 1.5 K for the Cl-compound. The reason for such a complex ground state may be geometrical frustration of the spins due to the intra- and inter-tetrahedral couplings having similar strengths. The magnetic moment in the Br- compound, calculated assuming it has the same magnetic structure as the Cl compound, is only 0.51(5)ÎŒB\mu_B/Cu2+{}^{2+} at 1.5 K. In neither compound has any evidence for a structural transition accompanying the magnetic ordering been found

    Spin-stripe phase in a frustrated zigzag spin-1/2 chain

    Full text link
    Motifs of periodic modulations are encountered in a variety of natural systems, where at least two rival states are present. In strongly correlated electron systems such behaviour has typically been associated with competition between short- and long-range interactions, e.g., between exchange and dipole-dipole interactions in the case of ferromagnetic thin films. Here we show that spin-stripe textures may develop also in antiferromagnets, where long-range dipole-dipole magnetic interactions are absent. A comprehensive analysis of magnetic susceptibility, high-field magnetization, specific heat, and neutron diffraction measurements unveils ÎČ\beta-TeVO4_4 as a nearly perfect realization of a frustrated (zigzag) ferromagnetic spin-1/2 chain. Strikingly, a narrow spin stripe phase develops at elevated magnetic fields due to weak frustrated short-range interchain exchange interactions possibly assisted by the symmetry allowed electric polarization. This concept provides an alternative route for the stripe formation in strongly correlated electron systems and may help understanding other widespread, yet still elusive, stripe-related phenomena.Comment: accapted in Nature Communication

    Persistent spin dynamics intrinsic to amplitude-modulated long-range magnetic order

    Full text link
    An incommensurate elliptical helical magnetic structure in the frustrated coupled-spin-chain system FeTe2O5Br is surprisingly found to persist down to 53(3) mK (T/T_N ~ 1/200), according to neutron scattering and muon spin relaxation. In this state, finite spin fluctuations at T -> 0 are evidenced by muon depolarization, which is in agreement with specific-heat data indicating the presence of both gapless and gapped excitations. We thus show that the amplitude-modulated magnetic order intrinsically accommodates contradictory persistent spin dynamics and long-range order and can serve as a model structure to investigate their coexistence.Comment: 5 pages + supplementar

    Evolution of magnetic and crystal structures in the multiferroic FeTe2O5Br

    Full text link
    Neutron diffraction and nuclear quadrupole resonance (NQR) measurements were employed to investigate magnetic order in the non-ferroelectric phase preceding the low-temperature multiferroic state in FeTe2O5Br. Refnement of the neutron diffraction data and simulations of 79,81Br NQR spectra reveal that the incommensurate magnetic ordering in the non-ferroelectric state comprises amplitude-modulated magnetic moments, similarly as in the multiferroic state. The two ordered states differ in the orientation of the magnetic moments and phase shifts between modulation waves. Surprisingly, all symmetry restrictions for the electric polarization are absent in both states. The different ferroelectric responses of the two states are thus argued to arise from the differences in the phase shifts between certain modulation waves, which cancel out in the non-ferrolectric state.Comment: 9 pages, 8 figures including appendix, published in PR

    Anomalous Magnetic Excitations of Cooperative Tetrahedral Spin Clusters

    Get PDF
    An inelastic neutron scattering study of Cu2Te2O5X2 (X=Cl, Br) shows strong dispersive modes with large energy gaps persisting far above T-N, notably in Cu2Te2O5Br2. The anomalous features: a coexisting unusually weak Goldstone-like mode observed in Cu2Te2O5Cl2 and the size of the energy gaps cannot be explained by existing theories, such as our mean-field or random-phase approximation. We argue that our findings represent a new general type of behavior due to intercluster quantum fluctuations and call for development of a new theoretical approach

    Magnetic phase diagram of the quantum spin chain compound SrCo2_{2}V2_{2}O8_{8}: a single-crystal neutron diffraction study in magnetic field

    Get PDF
    We explore the spin states in the quantum spin chain compound SrCo2_{2}V2_{2}O8_{8} up to 14.9 T and down to 50 mK, using single-crystal neutron diffraction. Upon cooling in zero-field, antiferromagnetic (AFM) order of N\'eel type develops at TNT_\mathrm{{N}} ≃\simeq 5.0 K. Applying an external magnetic field (HH ∄\parallel cc-axis) destabilizes the N\'eel order, leading to an order-disorder transition when applying a field between TNT_\mathrm{{N}} and ∌\sim 1.5 K. Below 1.5 K, we observe a N\'eel to longitudinal spin density wave (LSDW) order transition at 3.9 T, and a LSDW to emergent AFM order transition at 7.0 T. Our results also reveal several unique signatures for the states of the spins that are not present in the isostructural counterpart BaCo2_{2}V2_{2}O8_{8}.Comment: 9 pages, 9 figures. Accepted manuscrip
    • 

    corecore