22 research outputs found

    Spatio-Temporal Analysis of Car Distance, Greenhouse Gases and the Effect of Built Environment: a Latent Class Regression Analysis

    Get PDF
    This work examines the temporal-spatial variations of daily automobile distance traveled and greenhouse gas emissions (GHGs) and their association with built environment attributes and household socio-demographics. A GHGs household inventory is determined using link-level average speeds for a large and representative sample of households in three origin-destination surveys (1998, 2003 and 2008) in Montreal, Canada. For the emission inventories, different sources of data are combined including link-level average speeds in the network, vehicle occupancy levels and fuel consumption characteristics of the vehicle fleet. Built environment indicators over time such as population density, land use mix and transit accessibility are generated for each household in each of the three waves. A latent class (LC) regression modeling framework is then implemented to investigate the association of built environment and socio-demographics with GHGs and automobile distance traveled. Among other results, it is found that population density, transit accessibility and land-use mix have small but statistically significant negative impact on GHGs and car usage. Despite that this is in accordance with past studies, the estimated elasticities are greater than those reported in the literature for North American cities. Moreover, different household subpopulations are identified in which the effect of built environment varies significantly. Also, a reduction of the average GHGs at the household level is observed over time. According to our estimates, households produced 15% and 10% more GHGs in 1998 and 2003 respectively, compared to 2008. This reduction is associated to the improvement of the fuel economy of vehicle fleet and the decrease of motor-vehicle usage. A strong link is also observed between socio-demographics and the two travel outcomes. While number of workers is positively associated with car distance and GHGs, low and medium income households pollute less than high-income households

    Modeling the Effect of Land Use on Activity Spaces

    Get PDF
    Historically, when analyzing the effect of land-use on transportation demand, research has 2 concentrated on a few key indicators, notably mode choice, VMT and number of trips. At the 3 same time, this literature has primarily focused on the effects of individual land-use variables: 4 e.g. what is the effect of land-use mixity or population density on mode choice. It is becoming 5 increasingly clear however that the isolated impact of particular measures of land-use on 6 individual and household transportation behavior is small, but that when dealt with using a 7 clustered approach, their combined influence becomes both less ambiguous in direction and 8 greater in magnitude. This paper contributes to the transportation and land-use literature by 9 examining the effect of clusters of land-use indicators on activity spaces, an emerging but 10 traditionally ignored, transportation behavior indicator. Regression analysis results point to a 11 significant relationship between large and dispersed activity spaces, low levels of population and 12 employment density, and low levels of public transit accessibility and land use mix

    Mapping 123 million neonatal, infant and child deaths between 2000 and 2017

    Get PDF
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2—to end preventable child deaths by 2030—we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000–2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations

    Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017

    Get PDF
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic

    Global injury morbidity and mortality from 1990 to 2017 : results from the Global Burden of Disease Study 2017

    Get PDF
    Correction:Background Past research in population health trends has shown that injuries form a substantial burden of population health loss. Regular updates to injury burden assessments are critical. We report Global Burden of Disease (GBD) 2017 Study estimates on morbidity and mortality for all injuries. Methods We reviewed results for injuries from the GBD 2017 study. GBD 2017 measured injury-specific mortality and years of life lost (YLLs) using the Cause of Death Ensemble model. To measure non-fatal injuries, GBD 2017 modelled injury-specific incidence and converted this to prevalence and years lived with disability (YLDs). YLLs and YLDs were summed to calculate disability-adjusted life years (DALYs). Findings In 1990, there were 4 260 493 (4 085 700 to 4 396 138) injury deaths, which increased to 4 484 722 (4 332 010 to 4 585 554) deaths in 2017, while age-standardised mortality decreased from 1079 (1073 to 1086) to 738 (730 to 745) per 100 000. In 1990, there were 354 064 302 (95% uncertainty interval: 338 174 876 to 371 610 802) new cases of injury globally, which increased to 520 710 288 (493 430 247 to 547 988 635) new cases in 2017. During this time, age-standardised incidence decreased non-significantly from 6824 (6534 to 7147) to 6763 (6412 to 7118) per 100 000. Between 1990 and 2017, age-standardised DALYs decreased from 4947 (4655 to 5233) per 100 000 to 3267 (3058 to 3505). Interpretation Injuries are an important cause of health loss globally, though mortality has declined between 1990 and 2017. Future research in injury burden should focus on prevention in high-burden populations, improving data collection and ensuring access to medical care.Peer reviewe

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Transit Trip Itinerary Inference with GTFS and Smartphone Data

    Full text link
    Many emerging technologies have been developed to supplement and contribute to conventional household travel surveys for transport-related data collection. A great deal of research has concentrated on the inference of information from global positioning system (GPS) data and data collected from mobile phones; methods for inferring transit itinerary have not received much attention. Automatic detection of transit itineraries from smartphone travel surveys could be used by planning agencies to predict transit demand and help in analysis of transit planning scenarios. This paper describes a proposed approach to infer transit itinerary smartphone travel survey and general transit feed specification data from Montreal, Quebec, Canada. Transit trips from the 2013 household travel survey were recreated and recorded with the DataMobile smartphone travel survey from May to July 2016. Transit itineraries were then validated—that is, collected data were associated with transit routes for all parts of the trips. The proposed transit itinerary inference algorithm was then applied to these validated data. The approach relied on the notion of transit route ambiguity—that is, because transit routes can overlap, any attempt to associate GPS data with routes when routes do overlap will result in ambiguity in identifying which routes were actually used. The proportion of transit trips with associated transit routes that were ambiguous was calculated under different assumptions, rules, and eventually a simple algorithm. Findings indicate that, by using this approach, 94.2% of transit trip distance can be assigned to either one transit route or walking, and thus there is reduced ambiguity. This resulted in 87% correct prediction of transit routes

    Spatio-Temporal Analysis of Car Distance, Greenhouse Gases and the Effect of Built Environment: a Latent Class Regression Analysis

    Full text link
    This work examines the temporal-spatial variations of daily automobile distance traveled and greenhouse gas emissions (GHGs) and their association with built environment attributes and household socio-demographics. A GHGs household inventory is determined using link-level average speeds for a large and representative sample of households in three origin-destination surveys (1998, 2003 and 2008) in Montreal, Canada. For the emission inventories, different sources of data are combined including link-level average speeds in the network, vehicle occupancy levels and fuel consumption characteristics of the vehicle fleet. Built environment indicators over time such as population density, land use mix and transit accessibility are generated for each household in each of the three waves. A latent class (LC) regression modeling framework is then implemented to investigate the association of built environment and socio-demographics with GHGs and automobile distance traveled. Among other results, it is found that population density, transit accessibility and land-use mix have small but statistically significant negative impact on GHGs and car usage. Despite that this is in accordance with past studies, the estimated elasticities are greater than those reported in the literature for North American cities. Moreover, different household subpopulations are identified in which the effect of built environment varies significantly. Also, a reduction of the average GHGs at the household level is observed over time. According to our estimates, households produced 15% and 10% more GHGs in 1998 and 2003 respectively, compared to 2008. This reduction is associated to the improvement of the fuel economy of vehicle fleet and the decrease of motor-vehicle usage. A strong link is also observed between socio-demographics and the two travel outcomes. While number of workers is positively associated with car distance and GHGs, low and medium income households pollute less than high-income households
    corecore