262 research outputs found

    Two-qubit parametric amplifier: large amplification of weak signals

    Full text link
    Using numerical simulations, we show that two coupled qubits can amplify a weak signal about hundredfold. This can be achieved if the two qubits are biased simultaneously by this weak signal and a strong pump signal, both of which having frequencies close to the inter-level transitions in the system. The weak signal strongly affects the spectrum generated by the strong pumping drive by producing and controlling mixed harmonics with amplitudes of the order of the main harmonic of the strong drive. We show that the amplification is robust with respect to noise, with an intensity of the order of the weak signal. When deviating from the optimal regime (corresponding to strong qubit coupling and a weak-signal frequency equal to the inter-level transition frequency) the proposed amplifier becomes less efficient, but it can still considerably enhance a weak signal (by several tens). We therefore propose to use coupled qubits as a combined parametric amplifier and frequency shifter.Comment: 6 figure

    Squeezing as the source of inefficiency in the quantum Otto cycle

    Get PDF
    The availability of controllable macroscopic devices, which maintain quantum coherence over relatively long time intervals, for the first time allows an experimental realization of many effects previously considered only as Gedankenexperiments, such as the operation of quantum heat engines. The theoretical efficiency \eta of quantum heat engines is restricted by the same Carnot boundary \eta_C as for the classical ones: any deviations from quasistatic evolution suppressing \eta below \eta_C. Here we investigate an implementation of an analog of the Otto cycle in a tunable quantum coherent circuit and show that the specific source of inefficiency is the quantum squeezing of the thermal state due to the finite speed of compression/expansion of the system.Comment: 17 pages, 5 figure

    Giant conductance oscillations in a normal mesoscopic ring induced by an SNS Josephson current

    Get PDF
    A theoretical explanation of giant conductance oscillations observed in normal mesoscopic rings with superconducting ``mirrors" is proposed. The effect is due to resonant tuning of Andreev levels to the Fermi level, which enhances the transparency of the system to the normal current. The mechanism is demonstrated for a one-dimensional model system.Comment: 10 pages, RevTeX, 3 fig. available upon request, Appl. Phys. Report 94-
    • …
    corecore