9 research outputs found

    Conductivity and Dissociation in Metallic Hydrogen: Implications for Planetary Interiors

    Full text link
    Liquid metallic hydrogen (LMH) was recently produced under static compression and high temperatures in bench-top experiments. Here, we report a study of the optical reflectance of LMH in the pressure region of 1.4-1.7 Mbar and use the Drude free-electron model to determine its optical conductivity. We find static electrical conductivity of metallic hydrogen to be 11,000-15,000 S/cm. A substantial dissociation fraction is required to best fit the energy dependence of the observed reflectance. LMH at our experimental conditions is largely atomic and degenerate, not primarily molecular. We determine a plasma frequency and the optical conductivity. Properties are used to analyze planetary structure of hydrogen rich planets such as Jupiter

    Fully Consistent Density Functional Theory Determination of the Insulator-Metal Transition Boundary in Warm Dense Hydrogen

    Full text link
    Using conceptually and procedurally consistent density functional theory (DFT) calculations with an advanced meta-GGA exchange-correlation functional in ab initio molecular dynamics simulations, we determine the insulator-metal transition (IMT) of warm dense fluid hydrogen over the pressure range 50 to 300 GPa. Inclusion of nuclear quantum effects via path-integral molecular dynamics (PIMD) sharpens the metallic transition and lowers the transition temperature relative to results from Born-Oppenheimer (BO) MD. BOMD itself gives improved agreement with experimental results compared to previous DFT predictions. Examination of the ionic pair correlation function in the context of the abrupt conductivity increase at the transition confirms a metallic transition due to the dissociation of molecular hydrogen that coincides with an abrupt band gap closure. Direct comparison of the PIMD and BOMD results clearly demonstrates an isotope effect on the IMT. Distinct from stochastic simulations, these results do not depend upon any ad hoc combination of ground-state and finite-T methodologies

    Evidence of a first-order phase transition to metallic hydrogen

    No full text
    The insulator-metal transition in hydrogen is one of the most outstanding problems in condensed matter physics. The high-pressure metallic phase is now predicted to be liquid atomic from T=0 K to very high temperatures. We have conducted measurements of optical properties of hot dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K. We observe a first-order phase transition accompanied by changes in transmittance and reflectance characteristic of a metal. The phase line of this transition has a negative slope in agreement with theories of the so-called plasma phase transition.Physic
    corecore