36 research outputs found

    Oligonucleotides Targeting DNA Repeats Downregulate Huntingtin Gene Expression in Huntington's Patient-Derived Neural Model System

    Get PDF
    Huntington's disease (HD) is one of the most common, dominantly inherited neurodegenerative disorders. It affects the striatum, cerebral cortex, and other subcortical structures leading to involuntary movement abnormalities, emotional disturbances, and cognitive impairments. HD is caused by a CAG•CTG trinucleotide-repeat expansion in exon 1 of the huntingtin (HTT) gene leading to the formation of mutant HTT (mtHTT) protein aggregates. Besides the toxicity of the mutated protein, there is also evidence that mtHTT transcripts contribute to the disease. Thus, the reduction of both mutated mRNA and protein would be most beneficial as a treatment. Previously, we designed a novel anti-gene oligonucleotide (AGO)-based strategy directly targeting the HTT trinucleotide-repeats in DNA and reported downregulation of mRNA and protein in HD patient fibroblasts. In this study, we differentiate HD patient-derived induced pluripotent stem cells to investigate the efficacy of the AGO, a DNA/Locked Nucleic Acid mixmer with phosphorothioate backbone, to modulate HTT transcription during neural in vitro development. For the first time, we demonstrate downregulation of HTT mRNA following both naked and magnetofected delivery into neural stem cells (NSCs) and show that neither emergence of neural rosette structures nor self-renewal of NSCs is compromised. Furthermore, the inhibition potency of both HTT mRNA and protein without off-target effects is confirmed in neurons. These results further validate an anti-gene approach for the treatment of HD

    A Novel Protein LZTFL1 Regulates Ciliary Trafficking of the BBSome and Smoothened

    Get PDF
    Many signaling proteins including G protein-coupled receptors localize to primary cilia, regulating cellular processes including differentiation, proliferation, organogenesis, and tumorigenesis. Bardet-Biedl Syndrome (BBS) proteins are involved in maintaining ciliary function by mediating protein trafficking to the cilia. However, the mechanisms governing ciliary trafficking by BBS proteins are not well understood. Here, we show that a novel protein, Leucine-zipper transcription factor-like 1 (LZTFL1), interacts with a BBS protein complex known as the BBSome and regulates ciliary trafficking of this complex. We also show that all BBSome subunits and BBS3 (also known as ARL6) are required for BBSome ciliary entry and that reduction of LZTFL1 restores BBSome trafficking to cilia in BBS3 and BBS5 depleted cells. Finally, we found that BBS proteins and LZTFL1 regulate ciliary trafficking of hedgehog signal transducer, Smoothened. Our findings suggest that LZTFL1 is an important regulator of BBSome ciliary trafficking and hedgehog signaling

    The dynamic cilium in human diseases

    Get PDF
    Cilia are specialized organelles protruding from the cell surface of almost all mammalian cells. They consist of a basal body, composed of two centrioles, and a protruding body, named the axoneme. Although the basic structure of all cilia is the same, numerous differences emerge in different cell types, suggesting diverse functions. In recent years many studies have elucidated the function of 9+0 primary cilia. The primary cilium acts as an antenna for the cell, and several important pathways such as Hedgehog, Wnt and planar cell polarity (PCP) are transduced through it. Many studies on animal models have revealed that during embryogenesis the primary cilium has an essential role in defining the correct patterning of the body. Cilia are composed of hundreds of proteins and the impairment or dysfunction of one protein alone can cause complete loss of cilia or the formation of abnormal cilia. Mutations in ciliary proteins cause ciliopathies which can affect many organs at different levels of severity and are characterized by a wide spectrum of phenotypes. Ciliary proteins can be mutated in more than one ciliopathy, suggesting an interaction between proteins. To date, little is known about the role of primary cilia in adult life and it is tempting to speculate about their role in the maintenance of adult organs. The state of the art in primary cilia studies reveals a very intricate role. Analysis of cilia-related pathways and of the different clinical phenotypes of ciliopathies helps to shed light on the function of these sophisticated organelles. The aim of this review is to evaluate the recent advances in cilia function and the molecular mechanisms at the basis of their activity

    National health systems strengthening as the primary strategy to achieve universal health coverage in african countries

    Get PDF
    Africa is the second largest continent and has its socioeconomic and health peculiarities. Countries are faced with varying challenges towards its Universal Health Coverage (UHC) achievement and hence the region requires health system reforms to drive equitable and balanced medical services to its populace. The main objectives of the paper were to explore the complexities of the African health systems, subsequently highlighting major challenges to UHC and to provide a framework for strategic approaches to health system strengthening to ensure realization of UHC. Information presented in this paper was collected from published literature and reports on Rwanda, Kenya, Nigeria, Tanzania, Ghana, Tunisia, Democratic Republic of Congo, Zambia, Egypt and South Africa, amidst other African countries. The published literature points to the presence of a somewhat slow progress towards UHC or at least an existent knowledge of it. However, common challenges faced can be grouped into 1) Financial constraints which include low levels of government expenditure on health and increased out-of-pocket percentages, (2) Lack of coverage of key services which includes majorly immunization rates and existence of health insurance for citizens, (3) Input constraints ranging from drug availability to skilled healthcare workforce, information and research and (4) Lack of political support and commit-ment towards universal health coverage. To overcome the above-stated constraints, two broad groups of interventions were identified; General interventions largely focusing on reprioritization of health budget, quality and improved services, equipped facilities and efficient social protection systems; and Specific interventions which emphasizes the importance of eliminating shortage of health workers, ensuring availability of essential medicines/ products, embracing decen-tralization at supply chain management, validating data/ information system and advocacy for impactful health education/promotion. Although there will be strength and weakness for what-ever reforms adopted, implementation is totally contextual and contingent upon countries' specific health system bottlenecks

    A peptide-based vector for efficient gene transfer in vitro and in vivo.

    No full text
    Finding suitable nonviral delivery vehicles for nucleic acid-based therapeutics is a landmark goal in gene therapy. Cell-penetrating peptides (CPPs) are one class of delivery vectors that has been exploited for this purpose. However, since CPPs use endocytosis to enter cells, a large fraction of peptides remain trapped in endosomes. We have previously reported that stearylation of amphipathic CPPs, such as transportan 10 (TP10), dramatically increases transfection of oligonucleotides in vitro partially by promoting endosomal escape. Therefore, we aimed to evaluate whether stearyl-TP10 could be used for the delivery of plasmids as well. Our results demonstrate that stearyl-TP10 forms stable nanoparticles with plasmids that efficiently enter different cell-types in a ubiquitous manner, including primary cells, resulting in significantly higher gene expression levels than when using stearyl-Arg9 or unmodified CPPs. In fact, the transfection efficacy of stearyl-TP10 almost reached the levels of Lipofectamine 2000 (LF2000), however, without any of the observed lipofection-associated toxicities. Most importantly, stearyl-TP10/plasmid nanoparticles are nonimmunogenic, mediate efficient gene delivery in vivo, when administrated intramuscularly (i.m.) or intradermally (i.d.) without any associated toxicity in mice

    The Geology of the Egyptian Region

    No full text
    corecore