360 research outputs found

    The Luminosity and Mass Function of the Globular Cluster NGC1261

    Get PDF
    I-band CCD images of two large regions of the Galactic globular cluster NGC 1261 have been used to construct stellar luminosity functions (LF) for 14000 stars in three annuli from 1.4' from the cluster center to the tidal radius. The LFs extend to M_I~8 and tend to steepen from the inner to the outer annulus, in agreement with the predictions of the multimass King-Michie model that we have calculated for this cluster. The LFs have been transformed into mass functions. Once corrected for mass segregation the global mass function of NGC 1261 has a slope x_0=0.8+/-0.5Comment: 9 pages, A&A macros, accepted for publication in A&

    Deep infrared observations of the puzzling central X-ray source in RCW103

    Full text link
    1E 161348-5055 (1E 1613) is a point-like, soft X-ray source originally identified as a radio-quiet, isolated neutron star, shining at the center of the 2000 yr old supernova remnant RCW103. 1E 1613 features a puzzling 6.67 hour periodicity as well as a dramatic variability over a time scale of few years. Such a temporal behavior, coupled to the young age and to the lack of an obvious optical counterpart, makes 1E 1613 a unique source among all compact objects associated to SNRs. It could either be the first low-mass X-ray binary system discovered inside a SNR, or a peculiar isolated magnetar with an extremely slow spin period. Analysis of archival IR observations, performed in 2001 with the VLT/ISAAC instrument, and in 2002 with the NICMOS camera onboard HST unveils a very crowded field. A few sources are positionally consistent with the refined X-ray error region that we derived from the analysis of 13 Chandra observations. To shed light on the nature of 1E 1613, we have performed deep IR observations of the field with the NACO instrument at the ESO/VLT, searching for variability. We find no compelling reasons to associate any of the candidates to 1E 1613. On one side, within the frame of the binary system model for the X-ray source, it is very unlikely that one of the candidates be a low-mass companion star to 1E 1613. On the other side, if the X-ray source is an isolated magnetar surrounded by a fallback disc, we cannot exclude that the IR counterpart be hidden among the candidates. If none of the potential counterparts is linked to the X-ray source, 1E 1613 would remain undetected in the IR down to Ks>22.1. Such an upper limit is consistent only with an extremely low-mass star (an M6-M8 dwarf) at the position of 1E 1613, and makes rather problematic the interpretation of 1E 1613 as an accreting binary system.Comment: 26 pages, 5 figures. Accepted for publication in Ap

    Absolute motions of globular clusters. II. [HST astrometry and VLT radial velocities in NGC6397]

    Full text link
    In this paper we present a new, accurate determination of the three components of the absolute space velocity of the Galactic globular cluster NGC6397 (l 338d, b -12d). We used three HST/WFPC2 fields with multi-epoch observations to obtain astrometric measurements of objects in three different fields in this cluster. The identification of 33 background galaxies with sharp nuclei allowed us to determine an absolute reference point and measure the absolute proper motion of the cluster. The third component has been obtained from radial velocities measured on spectra from the multi-fiber spectrograph FLAMES at UT2-VLT. We find [mu_alpha cos(delta), mu_delta](J2000.0) = [+3.39 +/- 0.15, -17.55 +/- 0.15] mas/yr, and V_rad = +18.36 +/- 0.09 (+/-0.10) km/s. Assuming a Galactic potential, we calculate the cluster orbit for various assumed distances, and briefly discuss the implications.Comment: 7 pages, 5 figures, 4 tables. Accepted for publication in A&A, on April 27 200

    Outer structure of the Galactic warp and flare: explaining the Canis Major over-density

    Full text link
    (Abridged) We derive the structure of the Galactic stellar Warp and Flare using 2MASS RC and RGB stars, selected at mean heliocentric distances of 3, 7 and 17 kpc. Our results are: (i) a clear stellar warp signature is derived for the 3 selected rings; (ii) the derived stellar warp is consistent (both in amplitude and phase-angle) with that for the Galactic interstellar dust and HI gas; (iii) the Sun seems not to fall on the line of nodes. The stellar warp phase-angle orientation (+15 degrees) is close to the orientation angle of the Galactic bar and this produces an asymmetric warp for the inner rings; (iv) a Northern/Southern warp symmetry is observed only for the ring at 17 kpc; (v) treating a mixture of thin and thick disk populations we trace the disk flaring and derive a constant scale-height (~0.65 kpc) within R(GC)~15 kpc. Further out, the disk flaring increase gradually reaching a mean scale-height of ~1.5 kpc at R(GC)~23 kpc; and (vi) these results provide further robust evidence that there is no disk radial truncation at R(GC)~14 kpc. In the particular case of the Canis Major over-density we confirm its coincidence with the Southern stellar maximum warp occurring near l=240. We present evidence to conclude that all observed parameters (e.g. number density, radial velocities, proper motion etc) of CMa are consistent with it being a normal Milky Way outer-disk population, thereby leaving no justification for a more complex interpretations of its origin. The present analysis does not provide a conclusive test of the structure or origin of the Monoceros Ring. Nevertheless, we show that a warped flared Milky Way contributes significantly at the locations of the Monoceros Ring.Comment: 25 pages, 22 figures, accepted for publication in A&A. A higher resolution pdf file is available at http://wwwuser.oat.ts.astro.it/zaggia/public_html/warp

    Resolved stellar population of distant galaxies in the ELT era

    Full text link
    The expected imaging capabilities of future Extremely Large Telescopes (ELTs) will offer the unique possibility to investigate the stellar population of distant galaxies from the photometry of the stars in very crowded fields. Using simulated images and photometric analysis we explore here two representative science cases aimed at recovering the characteristics of the stellar populations in the inner regions of distant galaxies. Specifically: case A) at the center of the disk of a giant spiral in the Centaurus Group, (mu B~21, distance of 4.6 Mpc); and, case B) at half of the effective radius of a giant elliptical in the Virgo Cluster (mu~19.5, distance of 18 Mpc). We generate synthetic frames by distributing model stellar populations and adopting a representative instrumental set up, i.e. a 42 m Telescope operating close to the diffraction limit. The effect of crowding is discussed in detail showing how stars are measured preferentially brighter than they are as the confusion limit is approached. We find that (i) accurate photometry (sigma~0.1, completeness >90%) can be obtained for case B) down to I~28.5, J~27.5 allowing us to recover the stellar metallicity distribution in the inner regions of ellipticals in Virgo to within ~0.1 dex; (ii) the same photometric accuracy holds for the science case A) down to J~28.0, K~27.0, enabling to reconstruct of the star formation history up to the Hubble time via simple star counts in diagnostic boxes. For this latter case we discuss the possibility of deriving more detailed information on the star formation history from the analysis of their Horizontal Branch stars. We show that the combined features of high sensitivity and angular resolution of ELTs may open a new era for our knowledge of the stellar content of galaxies of different morphological type up to the distance of the Virgo cluster.Comment: 21 pages, 17 figures, PASP accepted in pubblicatio
    • …
    corecore