7 research outputs found
The Adverse Effects of Air Pollution on the Nervous System
Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer’s disease, Parkinson’s disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health
The Effect of Differentiating and Apoptotic Agents on Notch Signalling Pathway in Hepatoblastoma
Background/Aims: Notch expression is not yet determined in hepatoblastoma. In this study the effect of chemotherapeutics (cisplatin, doxorubicin, cytosin arabinoside); differentiating agent (13 cis-retinoic acid) and apoptotic agents (5-aza-2'-deoxycytidine, arsenic trioxide) on notch expression in hepatoblastoma were evaluated
The adverse effects of air pollution on the nervous system
Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health. Copyright © 2012 Sermin Genc et al
Intranasal erythropoietin therapy in nervous system disorders
Importance of the field: Erythropoietin (EPO) is a growth hormone and cytokine that plays an important role in erythropoiesis and neuroprotection. However, EPO treatment for neurological diseases requires repeated injections or high-dose systemic administration, which may cause systemic side effects. The lack of any effective treatment of acute and chronic neurodegenerative diseases and the promising outcome by EPO in animal models in vivo demand a critical evaluation of intranasal EPO delivery to the brain as an alternative administration method
The role of p14ARF methylation in neuroblastoma minimal residual disease
Objectives: The aim of the present study is to investigate the clinical significance of epigenetic changes in neuroblastoma, we evaluated the relationship between therapeutic variables and the pattern of gene methylation in neuroblastoma cell lines
Expression and Methylation Pattern of p16 in Neuroblastoma Tumorigenesis
Understanding migration, population and differentiation of primordial neural crest cells will help in evolving biology of neuroblastoma. P16 is a tumour suppressor gene contributing in cell cycle arrest as cyclin dependent kinase inhibitor. Methylation is an important mechanism for silencing tumor suppressor genes. The aim of this study was to evaluate the role of p16 and its methylation pattern in neuroblastoma tumorigenesis. This study included 23 cases (11 male; 12 female) and 31 samples from archival paraffin embedded tissues. P16 was studied in 5 samples of normal adrenal medullar tissue, 5 samples of adrenal tissue including blastic rests, 5 samples of neuroblastoma in situ tissue and in 8 samples of neuroblastoma tissues primary and after chemotherapy in each group. The adrenal gland tissues were obtained from paediatric autopsy cases. Expression of p16 was searched by immunohistochemistry. Methylation specific PCR was used to detect the methylation rate of p16. The age range of autopsy cases was between 20 weeks of foetal age and 36 months of infant age. The mean age of neuroblastoma cases was 45 months. P16 expression was positive in normal adrenal tissues, in one of 5 samples of adrenal blastic rest tissue and in all of samples of after chemotherapy; while no expression was observed in neuroblastoma and neuroblastoma in situ tissues. P16 methylation was observed in samples of neuroblastoma in situ and primary neuroblastoma tissues. Our results suggest that p16 and its methylation seems to play role in neuroblastoma tumorigenesis and in the migration, population and differentiation of primordial neural crest cells. Inhibitors of DNA methylation may provide a useful tool for restoring p16 activity in neuroblastoma treatment
The correlation between T regulatory cells and autologous peripheral blood stem cell transplantation in multiple myeloma
Objective: Multiple myeloma (MM) is characterized by malignant proliferation of plasmocytes and their precursors. T regulatory cells (Tregs) have a role in immunosuppression and control of autoimmunity, and are currently an important topic in the study of immune response to tumor cells. The correlation between Tregs and autologous peripheral blood stem cell transplantation (APBSCT) in MM has not been studied. The aim of this study was to compare CD4+CD25+FOXP3+ Treg, CD200, and PD-1 levels in MM patients that did and did not undergo APBSCT