213 research outputs found
A comparison of walk-in counselling and the wait list model for delivering counselling services
Background: Walk-in counselling has been used to reduce wait times but there are few controlled studies to compare outcomes between walk-in and the traditional model of service delivery.
Aims: To compare change in psychological distress by clients receiving services from two models of service delivery, a walk-in counselling model and a traditional counselling model involving a wait list
Method: Mixed methods sequential explanatory design including quantitative comparison of groups with one pre-test and two follow ups, and qualitative analysis of interviews with a subsample. 524 participants 16 years and older were recruited from two Family Counselling Agencies; the General Health Questionnaire assessed change in psychological distress; prior use of other mental health and instrumental services was also reported.
Results: Hierarchical linear modelling revealed clients of the walk-in model improved faster and were less distressed at the 4-week follow-up compared to the traditional service delivery model. At the 10-week follow-up, both groups had improved and were similar. Participants receiving instrumental services prior to baseline improved more slowly. Qualitative interviews confirmed participants valued the accessibility of the walk-in model.
Conclusions: This study improves methodologically on previous studies of walk-in counselling, an approach to service delivery that is not conducive to randomized controlled trials
Analysis of Separation Corridors for Visiting Vehicles from the International Space Station
The International Space Station (ISS) is a very dynamic vehicle with many operational constraints that affect its performance, operations, and vehicle lifetime. Most constraints are designed to alleviate various safety concerns that are a result of dynamic activities between the ISS and various Visiting Vehicles (VVs). One such constraint that has been in place for Russian Vehicle (RV) operations is the limitation placed on Solar Array (SA) positioning in order to prevent collisions during separation and subsequent relative motion of VVs. An unintended consequence of the SA constraint has been the impacts to the operational flexibility of the ISS resulting from the reduced power generation capability as well as from a reduction in the operational lifetime of various SA components. The purpose of this paper is to discuss the technique and the analysis that were applied in order to relax the SA constraints for RV undockings, thereby improving both the ISS operational flexibility and extending its lifetime for many years to come. This analysis focused on the effects of the dynamic motion that occur both prior to and following RV separations. The analysis involved a parametric approach in the conservative application of various initial conditions and assumptions. These included the use of the worst case minimum and maximum vehicle configurations, worst case initial attitudes and attitude rates, and the worst case docking port separation dynamics. Separations were calculated for multiple ISS docking ports, at varied deviations from the nominal undocking attitudes and included the use of two separate attitude control schemes: continuous free-drift and a post separation attitude hold. The analysis required numerical propagation of both the separation motion and the vehicle attitudes using 3-degree-of-freedom (DOF) relative motion equations coupled with rigid body rotational dynamics to generate a large set of separation trajectories
Systematic review of allelic exchange experiments aimed at identifying mutations that confer drug resistance in Mycobacterium tuberculosis
First published online: September 20, 2013BACKGROUND:
Improving our understanding of the relationship between the genotype and the drug resistance phenotype of Mycobacterium tuberculosis will aid the development of more accurate molecular diagnostics for drug-resistant tuberculosis. Studies that use direct genetic manipulation to identify the mutations that cause M. tuberculosis drug resistance are superior to associational studies in elucidating an individual mutation's contribution to the drug resistance phenotype.
METHODS:
We systematically reviewed the literature for publications reporting allelic exchange experiments in any of the resistance-associated M. tuberculosis genes. We included studies that introduced single point mutations using specialized linkage transduction or site-directed/in vitro mutagenesis and documented a change in the resistance phenotype.
RESULTS:
We summarize evidence supporting the causal relationship of 54 different mutations in eight genes (katG, inhA, kasA, embB, embC, rpoB, gyrA and gyrB) and one intergenic region (furA-katG) with resistance to isoniazid, the rifamycins, ethambutol and fluoroquinolones. We observed a significant role for the strain genomic background in modulating the resistance phenotype of 21 of these mutations and found examples of where the same drug resistance mutations caused varying levels of resistance to different members of the same drug class.
CONCLUSIONS:
This systematic review highlights those mutations that have been shown to causally change phenotypic resistance in M. tuberculosis and brings attention to a notable lack of allelic exchange data for several of the genes known to be associated with drug resistance.This work was supported by the Portuguese Foundation for Science and Technology (FCT) (SFRH/BD/33902/2009 to H. N.-G.), the National Institutes of Health/Fogarty International Center (1K01 TW009213 to K.R.J.), departmental funds of the pulmonary division of Massachusetts General Hospital to M. R. F. and the National Institutes of Health/NIAID (U19 A1076217 to M.B.M.)
Drosophila KCNQ Channel Displays Evolutionarily Conserved Electrophysiology and Pharmacology with Mammalian KCNQ Channels
Of the five human KCNQ (Kv7) channels, KCNQ1 with auxiliary subunit KCNE1 mediates the native cardiac IKs current with mutations causing short and long QT cardiac arrhythmias. KCNQ4 mutations cause deafness. KCNQ2/3 channels form the native M-current controlling excitability of most neurons, with mutations causing benign neonatal febrile convulsions. Drosophila contains a single KCNQ (dKCNQ) that appears to serve alone the functions of all the duplicated mammalian neuronal and cardiac KCNQ channels sharing roughly 50–60% amino acid identity therefore offering a route to investigate these channels. Current information about the functional properties of dKCNQ is lacking therefore we have investigated these properties here. Using whole cell patch clamp electrophysiology we compare the biophysical and pharmacological properties of dKCNQ with the mammalian neuronal and cardiac KCNQ channels expressed in HEK cells. We show that Drosophila KCNQ (dKCNQ) is a slowly activating and slowly-deactivating K+ current open at sub-threshold potentials that has similar properties to neuronal KCNQ2/3 with some features of the cardiac KCNQ1/KCNE1 accompanied by conserved sensitivity to a number of clinically relevant KCNQ blockers (chromanol 293B, XE991, linopirdine) and opener (zinc pyrithione). We also investigate the molecular basis of the differential selectivity of KCNQ channels to the opener retigabine and show a single amino acid substitution (M217W) can confer sensitivity to dKCNQ. We show dKCNQ has similar electrophysiological and pharmacological properties as the mammalian KCNQ channels, allowing future study of physiological and pathological roles of KCNQ in Drosophila and whole organism screening for new modulators of KCNQ channelopathies
Rapid movement and transcriptional re-localization of human cohesin on DNA
The spatial organization, correct expression, repair, and segregation of eukaryotic genomes depend on cohesin, ring-shaped protein complexes that are thought to function by entrapping DNA It has been proposed that cohesin is recruited to specific genomic locations from distal loading sites by an unknown mechanism, which depends on transcription, and it has been speculated that cohesin movements along DNA could create three-dimensional genomic organization by loop extrusion. However, whether cohesin can translocate along DNA is unknown. Here, we used single-molecule imaging to show that cohesin can diffuse rapidly on DNA in a manner consistent with topological entrapment and can pass over some DNA-bound proteins and nucleosomes but is constrained in its movement by transcription and DNA-bound CCCTC-binding factor (CTCF). These results indicate that cohesin can be positioned in the genome by moving along DNA, that transcription can provide directionality to these movements, that CTCF functions as a boundary element for moving cohesin, and they are consistent with the hypothesis that cohesin spatially organizes the genome via loop extrusion
The combination of intravitreal triamcinolone and phacoemulsification surgery in patients with diabeticfoveal oedema and cataract
BACKGROUND: The management of diabetic patients with refractory macular oedema or patients with no adequate pre-operative view to administer laser treatment provide a challenge to the ophthalmologist. We wished to assess the use, safety and effect of intravitreal triamcinolone injection at the time of cataract surgery in patients with diabetic foveal oedema and sight limiting lens opacities. METHOD: This was a longitudinal non-randomised prospective pilot study in 18 eyes (12 patients). All patients had visually significant lens opacities and either persistent diabetic foveal oedema unresponsive to laser treatment-group A, or foveal oedema with no adequate pre-operative view for laser treatment- group B. The cataract surgery was carried out under full aseptic technique using a self-sealing temporal incision and a foldable acrylic lens. Intravitreal triamcinolone was given infratemporally pars plana at the completion of the cataract surgery. The patients were reviewed at day 5, 2 weeks, 2 months and then every 3 months as required. The Wilcoxin matched-pairs test was used to assess the significance of the improvement in visual acuity at 2 months. RESULTS: Twelve patients with a total of 18 eyes were included in the study. There were 10 patients (15 eyes) in group A and 3 patients (3 eyes) in group B. Preoperatively 16 of the 18 eyes had a visual acuity of 6/24 or worse. Postoperatively 83% of patients had completely dry foveae at 2 weeks. Best-corrected visual acuities at two months review ranged from 6/6 to CF with 9 eyes (50%) achieving 6/12 or better (7 eyes (47%) in group A and 2 eyes (67%) in group B). Three eyes had no recorded improvement in visual acuity, but no eyes had deterioration in acuity. The improvement in visual acuity was significant at p = 0.001. There were no significant sight threatening complications. CONCLUSION: Intravitreal triamcinolone has been shown to lead to an improvement in macular oedema and visual improvement in diabetic patients not undergoing cataract surgery but has not, to our knowledge, been previously used in a study like this one. We suggest that intravitreal injection at the time of cataract surgery could be carried out safely with encouraging visual outcomes in patients with diabetic foveal oedema and cataract
Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance
In breast cancer, overexpression of the transmembrane tyrosine kinase ERBB2 is an adverse prognostic marker, and occurs in almost 30% of the patients. For therapeutic intervention, ERBB2 is targeted by monoclonal antibody trastuzumab in adjuvant settings; however, de novo resistance to this antibody is still a serious issue, requiring the identification of additional targets to overcome resistance. In this study, we have combined computational simulations, experimental testing of simulation results, and finally reverse engineering of a protein interaction network to define potential therapeutic strategies for de novo trastuzumab resistant breast cancer.First, we employed Boolean logic to model regulatory interactions and simulated single and multiple protein loss-of-functions. Then, our simulation results were tested experimentally by producing single and double knockdowns of the network components and measuring their effects on G1/S transition during cell cycle progression. Combinatorial targeting of ERBB2 and EGFR did not affect the response to trastuzumab in de novo resistant cells, which might be due to decoupling of receptor activation and cell cycle progression. Furthermore, examination of c-MYC in resistant as well as in sensitive cell lines, using a specific chemical inhibitor of c-MYC (alone or in combination with trastuzumab), demonstrated that both trastuzumab sensitive and resistant cells responded to c-MYC perturbation.In this study, we connected ERBB signaling with G1/S transition of the cell cycle via two major cell signaling pathways and two key transcription factors, to model an interaction network that allows for the identification of novel targets in the treatment of trastuzumab resistant breast cancer. Applying this new strategy, we found that, in contrast to trastuzumab sensitive breast cancer cells, combinatorial targeting of ERBB receptors or of key signaling intermediates does not have potential for treatment of de novo trastuzumab resistant cells. Instead, c-MYC was identified as a novel potential target protein in breast cancer cells
- …