55 research outputs found

    Exploring a Dark Sector Through the Higgs Portal at a Lepton Collider

    Get PDF
    We investigate the prospects for detecting a hidden sector at an e+e−e^+ e^- collider. The hidden sector is assumed to be composed of invisible particles that carry no charges under the Standard Model gauge interactions, and whose primary interactions with ordinary matter are through the Higgs portal. We consider both the cases when the decays of an on-shell Higgs into a pair of hidden sector particles are kinematically allowed, and the case when such decays are kinematically forbidden. We find that at collider energies below a TeV, the most sensitive channel involves production of an on-shell or off-shell Higgs in association with a Z boson, and the subsequent decay of the Higgs into invisible hidden sector states. Focusing on this channel, we find that with order a thousand inverse fb of data at 250 GeV, the decay branching fraction of an on-shell Higgs to invisible hidden sector states can be constrained to lie below half a percent. The corresponding limits on Higgs portal dark matter will be stronger than the bounds from current and upcoming direct detection experiments in much of parameter space. With the same amount of data at 500 GeV, assuming order one couplings, decays of an off-shell Higgs to hidden sector states with a total mass up to about 200 GeV can also be probed. Both the on-shell and off-shell cases represent a significant improvement in sensitivity when compared to the Large Hadron Collider (LHC).Comment: 7 pages, 6 figures, minor revisions, with added references, new version to appear in Physics Letters

    Resonance at 125 GeV: Higgs or Dilaton/Radion?

    Full text link
    We consider the possibility that the new particle that has been observed at 125 GeV is not the Standard Model (SM) Higgs, but instead the dilaton associated with an approximate conformal symmetry that has been spontaneously broken. We focus on dilatons that arise from theories of technicolor, or from theories of the Higgs as a pseudo-Nambu-Goldstone boson (pNGB), that involve strong conformal dynamics in the ultraviolet. In the pNGB case, we are considering a framework where the Higgs particle is significantly heavier than the dilaton and has therefore not yet been observed. In each of the technicolor and pNGB scenarios, we study both the case when the SM fermions and gauge bosons are elementary, and the case when they are composites of the strongly interacting sector. Our analysis incorporates conformal symmetry violating effects, which are necessarily present since the dilaton is not massless, and is directly applicable to a broad class of models that stabilize the weak scale and involve strong conformal dynamics. Since the AdS/CFT correspondence relates the radion in Randall-Sundrum (RS) models to the dilaton, our results also apply to RS models with the SM fields localized on the infrared brane, or in the bulk. We identify the parameters that can be used to distinguish the dilatons associated with the several different classes of theories being considered from each other, and from the SM Higgs. We perform a fit to all the available data from several experiments and highlight the key observations to extract these parameters. We find that at present, both the technicolor and pNGB dilaton scenarios provide a good fit to the data, comparable to the SM Higgs. We indicate the future observations that will help to corroborate or falsify each scenario.Comment: 41 pages, 4 figures. Analysis updated using current theoretical limits on dimensions of CFT operators. References added. Version to appear on JHE

    Cosmological Signatures of a Mirror Twin Higgs

    Full text link
    We explore the cosmological signatures associated with the twin baryons, electrons, photons and neutrinos in the Mirror Twin Higgs framework. We consider a scenario in which the twin baryons constitute a subcomponent of dark matter, and the contribution of the twin photon and neutrinos to dark radiation is suppressed due to late asymmetric reheating, but remains large enough to be detected in future cosmic microwave background (CMB) experiments. We show that this framework can lead to distinctive signals in large scale structure and in the cosmic microwave background. Baryon acoustic oscillations in the mirror sector prior to recombination lead to a suppression of structure on large scales, and leave a residual oscillatory pattern in the matter power spectrum. This pattern depends sensitively on the relative abundances and ionization energies of both twin hydrogen and helium, and is therefore characteristic of this class of models. Although both mirror photons and neutrinos constitute dark radiation in the early universe, their effects on the CMB are distinct. This is because prior to recombination the twin neutrinos free stream, while the twin photons are prevented from free streaming by scattering off twin electrons. In the Mirror Twin Higgs framework the relative contributions of these two species to the energy density in dark radiation is predicted, leading to testable effects in the CMB. These highly distinctive cosmological signatures may allow this class of models to be discovered, and distinguished from more general dark sectors.Comment: 30 pages, 6 figures; added new discussions and figures; references added; matches published versio
    • …
    corecore