679 research outputs found
Recommended from our members
Hanford Permanent Isolation Barrier Program: Asphalt technology data and status report - FY 1994
The asphalt layer within the Hanford Permanent Isolation Barrier (HPIB) is an important component of the overall design. This layer provides a RCRA equivalent backup to the overlying earthen layers in the unlikely event that these layers are not able to reduce the infiltration rate to less than 0.05 cm/yr. There is only limited amount of information on using asphalt for a moisture infiltration barrier over the long times required by the HPIB. Therefore, a number of activities are under way, as part of the Barrier Development Program, to obtain data on the performance of asphalt as a moisture barrier in a buried environment over a 1000-year period. These activities include (1) determining RCRA equivalency, (2) measurement of physical properties, (3) measurement of aging characteristics, and (4) relationship to ancient asphalt analogs. During FY 1994 progress was made on all of these activities. Studies were conducted both in the laboratory and on the prototype barrier constructed over the 216-B-57 crib in the 200 East Area on the Hanford Site. This report presents results obtained from the asphalt technology tasks during FY 1994. Also included are updates to planned activities for asphalt analogs and monitoring the asphalt test pad near the prototype barrier. Measurements of hydraulic conductivity on the HMAC portion of the prototype barrier show that the asphalt layers easily meet the RCRA standard of 1 {times} 10{sup -7} cm/s. In-place measurements using a new field falling head technique show an average of 3.66 {times} 10{sup -8} cm/s, while cores taken from the north end of the prototype and measured in a laboratory setup averaged 1.29 {times} 10{sup -9} cm/s. Measurements made on the fluid applied asphalt membrane (polymer-modified asphalt) show an extremely low permeability of less than 1 {times} 10{sup -11} cm/s
A pulsed, mono-energetic and angular-selective UV photo-electron source for the commissioning of the KATRIN experiment
The KATRIN experiment aims to determine the neutrino mass scale with a
sensitivity of 200 meV/c^2 (90% C.L.) by a precision measurement of the shape
of the tritium -spectrum in the endpoint region. The energy analysis of
the decay electrons is achieved by a MAC-E filter spectrometer. To determine
the transmission properties of the KATRIN main spectrometer, a mono-energetic
and angular-selective electron source has been developed. In preparation for
the second commissioning phase of the main spectrometer, a measurement phase
was carried out at the KATRIN monitor spectrometer where the device was
operated in a MAC-E filter setup for testing. The results of these measurements
are compared with simulations using the particle-tracking software
"Kassiopeia", which was developed in the KATRIN collaboration over recent
years.Comment: 19 pages, 16 figures, submitted to European Physical Journal
One particle interchain hopping in coupled Hubbard chains
Interchain hopping in systems of coupled chains of correlated electrons is
investigated by exact diagonalizations and Quantum-Monte-Carlo methods. For two
weakly coupled Hubbard chains at commensurate densities (e.g. n=1/3) the
splitting at the Fermi level between bonding and antibonding bands is strongly
reduced (but not suppressed) by repulsive interactions extending to a few
lattice spacings. The magnitude of this reduction is directly connected to the
exponent of the 1D Luttinger liquid. However, we show that the
incoherent part of the single particle spectral function is much less affected
by the interchain coupling. This suggests that incoherent interchain hopping
could occur for intermediate values.Comment: 4 pages, LaTeX 3.0, 7 PostScript figures in uuencoded for
Recommended from our members
Application of the base catalyzed decomposition process to treatment of PCB-contaminated insulation and other materials associated with US Navy vessels. Final report
The BCD process was applied to dechlorination of two types of PCB-contaminated materials generated from Navy vessel decommissioning activities at Puget Sound Naval Shipyard: insulation of wool felt impregnated with PCB, and PCB-containing paint chips/debris from removal of paint from metal surfaces. The BCD process is a two-stage, low-temperature chemical dehalogenation process. In Stage 1, the materials are mixed with sodium bicarbonate and heated to 350 C. The volatilized halogenated contaminants (eg, PCBs, dioxins, furans), which are collected in a small volume of particulates and granular activated carbon, are decomposed by the liquid-phase reaction (Stage 2) in a stirred-tank reactor, using a high-boiling-point hydrocarbon oil as the reaction medium, with addition of a hydrogen donor, a base (NaOH), and a catalyst. The tests showed that treating wool felt insulation and paint chip wastes with Stage 2 on a large scale is feasible, but compared with current disposal costs for PCB-contaminated materials, using Stage 2 would not be economical at this time. For paint chips generated from shot/sand blasting, the solid-phase BCD process (Stage 1) should be considered, if paint removal activities are accelerated in the future
Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions
Altered glucocorticoid receptor (GR) signaling is a postulated mechanism for the pathogenesis of major depression. To mimic the human situation of altered GR function claimed for depression, we generated mouse strains that underexpress or overexpress GR, but maintain the regulatory genetic context controlling the GR gene. To achieve this goal, we used the following: (1) GR-heterozygous mutant mice (GR+/-) with a 50% GR gene dose reduction, and (2) mice overexpressing GR by a yeast artificial chromosome resulting in a twofold gene dose elevation. GR+/- mice exhibit normal baseline behaviors but demonstrate increased helplessness after stress exposure, a behavioral correlate of depression in mice. Similar to depressed patients, GR+/- mice have a disinhibited hypothalamic-pituitary-adrenal (HPA) system and a pathological dexamethasone/corticotropin-releasing hormone test. Thus, they represent a murine depression model with good face and construct validity. Overexpression of GR in mice evokes reduced helplessness after stress exposure, and an enhanced HPA system feedback regulation. Therefore, they may represent a model for a stress-resistant strain. These mouse models can now be used to study biological changes underlying the pathogenesis of depressive disorders. As a first potential molecular correlate for such changes, we identified a downregulation of BDNF protein content in the hippocampus of GR+/- mice, which is in agreement with the so-called neurotrophin hypothesis of depression
One-Particle Spectral Properties of Mott-Hubbard Insulators
We use an exact holon and spinon Landau-liquid functional which describes the
holon - spinon interactions at all scattering orders, to study correlation
functions of integrable multicomponent many-particle problems showing both
linear and non-linear energy bands. We consider specific cases when the
dominant non-linear band terms are quadratic and apply our results to the
evaluation of the 1D Hubbard model correlation functions beyond conformal-field
theory.Comment: 10 Pages, Revte
Critical Properties in Dynamical Charge Correlation Function for the One-Dimensional Mott Insulator
Critical properties in the dynamical charge correlation function for the
one-dimensional Mott insulator are studied. By properly taking into account
{\it the final-state interaction} between the charge and spin degrees of
freedom, we find that the edge singularity in the charge correlation function
is governed by massless spinon excitations, although it is naively expected
that spinons do not directly contribute to the charge excitation over the
Hubbard gap. We obtain the momentum-dependent anomalous critical exponent by
applying the finite-size scaling analysis to the Bethe ansatz solution of the
half-filled Hubbard model.Comment: 7 pages, REVTe
Critical Properties in Photoemmision Spectra for One Dimensional Orbitally Degenerate Mott Insulator
Critical properties in photoemission spectra for the one-dimensional Mott
insulator with orbital degeneracy are studied by exploiting the integrable {\it
t-J} model, which is a supersymmetric generalization of the SU() degenerate
spin model. We discuss the critical properties for the holon dispersion as well
as the spinon dispersions, by applying the conformal field theory analysis to
the exact finite-size energy spectrum. We study the effect of orbital-splitting
on the spectra by evaluating the momentum-dependent critical exponents.Comment: 8 pages, REVTeX, 2 figures(available upon request), accepted for
publication in JPSJ 68 (1999) No.
Interrelation of Superconducting and Antiferromagnetic Gaps in High-Tc Compounds: a Test Case for a Microscopic Theory
Recent angle resolved photoemission (ARPES) data, which found evidence for a
d-wave-like modulation of the antiferromagnetic gap, suggest an intimate
interrelation between the antiferromagnetic insulator and the superconductor
with its d-wave gap. This poses a new challenge to microscopic descriptions,
which should account for this correlation between, at first sight, very
different states of matter. Here, we propose a microscopic mechanism which
provides a definite correlation between these two different gap structures: it
is shown that a projected SO(5) theory, which aims at unifying
antiferromagnetism and d-wave superconductivity via a common symmetry principle
while explicitly taking the Mott-Hubbard gap into account, correctly describes
the observed gap characteristics. Specifically, it accounts for both the
dispersion and the order of magnitude difference between the antiferromagnetic
gap modulation and the superconducting gap.Comment: 8 pages, 5 figure
- …