2 research outputs found

    Simulated driving in the epilepsy monitoring unit: Effects of seizure type, consciousness, and motor impairment.

    No full text
    People with epilepsy face serious driving restrictions, determined using retrospective studies. To relate seizure characteristics to driving impairment, we aimed to study driving behavior during seizures with a simulator. Patients in the Yale New Haven Hospital undergoing video-electroencephalographic monitoring used a laptop-based driving simulator during ictal events. Driving function was evaluated by video review and analyzed in relation to seizure type, impairment of consciousness/responsiveness, or motor impairment during seizures. Fifty-one seizures in 30 patients were studied. In terms of seizure type, we found that focal to bilateral tonic-clonic or myoclonic seizures (5/5) and focal seizures with impaired consciousness/responsiveness (11/11) always led to driving impairment; focal seizures with spared consciousness/responsiveness (0/10) and generalized nonmotor (generalized spike-wave bursts; 1/19) usually did not lead to driving impairment. Regardless of seizure type, we found that seizures with impaired consciousness (15/15) or with motor involvement (13/13) always led to impaired driving, but those with spared consciousness (0/20) or spared motor function (5/38) usually did not. These results suggest that seizure types with impaired consciousness/responsiveness and abnormal motor function contribute to impaired driving. Expanding this work in a larger cohort could further determine how results with a driving simulator may translate into real world driving safety

    Decreased but diverse activity of cortical and thalamic neurons in consciousness-impairing rodent absence seizures

    Get PDF
    Absence seizures impair consciousness by an unknown neuronal mechanism. Here, the authors find that a rat absence seizure model’s behavior and hemodynamics recapitulate previously reported characteristics of human absence seizures, and uncover four distinct patterns of neuronal activity in cortex and thalamus during consciousness-impairing seizures
    corecore