719 research outputs found

    Modelling of blazar SEDs with the nonlinear SSC cooling process

    Full text link
    Observations of blazar flaring states reveal remarkably different variability time scales. Especially rapid flares with flux doubling time scales of the order of minutes have been puzzling for quite some time. Many modeling attempts use the well known linear relations for the cooling and emission processes in the jet in a steady-state scenario, albeit the obvious strongly time-dependent nature of flares. Due to the feedback of self-produced radiation with additional scattering by relativistic electrons, the synchrotron-self Compton (SSC) effect is inherently time-dependent. Although this feedback is usually implemented in numerical treatments, only recently an analytical analysis of the effects of this nonlinear behaviour has been performed. Here, we report our results concerning the effect of the time-dependent SSC on the spectral energy distribution (SED) of blazars. We calculated analytically the synchrotron and the SSC component, giving remarkably different spectral features compared to the standard linear approach. Adding an external photon field to the original setting, we could implement quite easily the effect of an additional external Compton (EC) cooling, since such strong external photon fields are observed in flat spectrum radio quasars (FSRQ), a subclass of blazars. Calculating the resulting flux due to the EC cooling, we were able to show that the resulting inverse Compton component strongly depends on the free parameters, and that SSC could potentially have a strong effect in FSRQs, contrary to what is usually assumed.Comment: Contribution to the GAMMA2012 conference in Heidelberg, to be published in the AIP Proceedings "High Energy Gamma-Ray Astronomy, eds. F. Aharonian, W. Hofmann, F. Rieger

    The Extended Jet In AP Librae As The Source Of The VHE γ\gamma-ray Emission

    Full text link
    Most modeling attempts of blazars use a small emission zone located close to the central black hole in order to explain the broad-band spectral energy distribution. Here we present a case where additionally to the small region a >>kpc-scale jet is required to successfully reproduce the spectrum and especially the TeV emission, namely the low-frequeny peaked BL Lac object AP Librae detected in the TeV domain by the H.E.S.S. experiment. Given that other parts of the spectral energy distribution follow the characteristics implied by the source classification, the inverse Compton component spans 10 orders of magnitude, which cannot be reproduced by the one-zone model. Additionally, observational constraints in both the synchrotron and inverse Compton compoenent strongly constrain the parameters of a self-consistent model ruling out the possibility of TeV photon production in the vicinity of the galactic center. We discuss the possibility that the TeV radiation is emitted by highly energetic particles in the extended, arcsec-scale jet, which has been detected at radio and X-ray energies. The slope of the jet X-ray spectrum indicates an inverse Compton origin, and an extrapolation to higher energies coincides with a break feature in the γ\gamma-ray band. Modeling the jet emission with inverse Compton scattering of the cosmic microwave background results in an excellent fit of the radio, X-ray and TeV emission. Implications will be discussed, such as properties of the jet, acceleration scenarios, and observations to test the model. If confirmed, large scale jets are able to efficiently accelerate particles and to keep relativistic speeds up to distances of several 100kpc.Comment: 5 pages, 1 figure, to appear in the AIP Conference proceedings of the "High Energy Gamma-Ray Astronomy (Gamma2016)", edited by F. Aharonian, W. Hofmann, F. Riege

    Attenuation of TeV γ\gamma-rays by the starlight photon field of the host galaxy

    Full text link
    The absorption of TeV γ\gamma-ray photons produced in relativistic jets by surrounding soft photon fields is a long-standing problem of jet physics. In some cases the most likely emission site close to the central black hole is ruled out because of the high opacity caused by strong optical and infrared photon sources, such as the broad line region. Mostly neglected for jet modeling is the absorption of γ\gamma-rays in the starlight photon field of the host galaxy. Analyzing the absorption for arbitrary locations and observation angles of the γ\gamma-ray emission site within the host galaxy we find that the distance to the galaxy center, the observation angle, and the distribution of starlight in the galaxy are crucial for the amount of absorption. We derive the absorption value for a sample of 2020 TeV detected blazars with a redshift zr<0.2z_r<0.2. The absorption value of the γ\gamma-ray emission located in the galaxy center may be as high as 20%20\% with an average value of 6%6\%. This is important in order to determine the intrinsic blazar parameters. We see no significant trends in our sample between the degree of absorption and host properties, such as starlight emissivity, galactic size, half-light radius, and redshift. While the uncertainty of the spectral properties of the extragalactic background light exceeds the effect of absorption by stellar light from the host galaxy in distant objects, the latter is a dominant effect in nearby sources. It may also be revealed in a differential comparison of sources with similar redshifts.Comment: 9 pages, 4 figures; accepted for publication in MNRA

    On the evolution of the particle distribution and the cascade in a moving, expanding emission region in blazar jets

    Full text link
    There is a large variety in the models explaining blazar flares. Here, we study the flare profile induced by a moving and expanding blob with special emphasize on the gamma-gamma pair production. We first develop a simple semi-analytical model to study the evolution of the particle distribution in the expanding blob and show the influence of the pair production. In a second step, we produce a realistic simulation using the OneHaLe code based upon parameters of PKS 1510-089. The semi-analytical model shows that the pair production significantly influences the flare evolution, while the opening angle and the expansion can prolong flares considerably. The simulation based on PKS 1510-089 indicate that flares of a moving expanding blob result in strongly wavelength dependant light curves including delayed, secondary flares. A moving, expanding blob can cause significant flaring events with a large variety in light curve profiles. High-cadence multiwavelength observations are necessary to derive the details causing the flare. Extended observations beyond the initial burst may provide important information on the opening angle and the particle content due to delayed secondary flares in some energy bands.Comment: 15 pages, 11 figures, accepted for publication in A&
    • …
    corecore