54 research outputs found

    Anomalously enhanced photoemission from the Dirac point and symmetry of the self-energy variations for the surface states in Bi2Se3

    Full text link
    Accurate analysis of the photoemission intensity from the surface states of Bi2Se3 reveals two unusual features: spectral line asymmetry and anomalously enhanced photoemission from the Dirac point. The former indicates a certain symmetry of a scattering process, which results in strongly k\omega-dependent contribution to the imaginary part of the self-energy that changes sign while crossing both the dispersion curves and the energy of the Dirac point. The latter is hard to describe by one particle spectral function while a final state interference seems to be plausible explanation

    Photoemission induced gating of topological insulator

    Full text link
    The recently discovered topological insulators exhibit topologically protected metallic surface states which are interesting from the fundamental point of view and could be useful for various applications if an appropriate electronic gating can be realized. Our photoemission study of Cu intercalated Bi2Se3 shows that the surface states occupancy in this material can be tuned by changing the photon energy and understood as a photoemission induced gating effect. Our finding provides an effective tool to investigate the new physics coming from the topological surface states and suggests the intercalation as a recipe for synthesis of the material suitable for electronic applications.Comment: + resistivity data and some discussio

    A weak-coupling superconductivity in the electron doped NaFe0.95_{0.95}Co0.05_{0.05}As is revealed by ARPES

    Full text link
    We report a systematic study on the electronic structure and superconducting (SC) gaps in electron doped NaFe0.95_{0.95}Co0.05_{0.05}As superconductor using angle-resolved photoemission spectroscopy. Hole-like Fermi sheets are at the zone center and electron-like Fermi sheets are at the zone corner, and are mainly contributed by xzxz and yzyz orbital characters. Our results reveal a ΔKBTc\frac{\Delta}{K_B T_c} in the range of 1.8-2.1, suggesting a weak-coupling superconductivity in these compounds. Gap closing above the transition temperature (TcT_c) shows the absence of pseudogaps. Gap evolution with temperature follow the BCS gap equation near the Γ\Gamma, ZZ, and MM high symmetry points. Furthermore, an almost isotropic superconductivity along kzk_z direction in the momentum space is observed by varying the excitation energies.Comment: 6 pages, 5 figures, Accepted by Phy.Rev.

    Exotic Kondo crossover in a wide temperature region in the topological Kondo insulator SmB6 revealed by high-resolution ARPES

    Full text link
    Temperature dependence of the electronic structure of SmB6 is studied by high-resolution ARPES down to 1 K. We demonstrate that there is no essential difference for the dispersions of the surface states below and above the resistivity saturating anomaly (~ 3.5 K). Quantitative analyses of the surface states indicate that the quasi-particle scattering rate increases linearly as a function of temperature and binding energy, which differs from Fermi-Liquid behavior. Most intriguingly, we observe that the hybridization between the d and f states builds gradually over a wide temperature region (30 K < T < 110 K). The surface states appear when the hybridization starts to develop. Our detailed temperature-dependence results give a complete interpretation of the exotic resistivity result of SmB6, as well as the discrepancies among experimental results concerning the temperature regions in which the topological surface states emerge and the Kondo gap opens, and give new insights into the exotic Kondo crossover and its relationship with the topological surface states in the topological Kondo insulator SmB6.Comment: 8 pages, 5 figure

    Time of life as it is in LiFeAs

    Full text link
    The time of life of fermionic quasiparticles, the distribution of which in the momentum-energy space can be measured by angle resolved photoemission (ARPES), is the first quantity to look for fingerprints of interaction responsible for the superconducting pairing. Such an approach has been recently used for superconducting cuprates, but its direct application to pnictides was not possible due to essential three-dimensionality of the electronic band structure and magnetic ordering. Here, we report the investigation of the quasiparticle lifetime in LiFeAs, a non-magnetic stoichiometric superconductor with a well separated two-dimensional band. We have found two energy scales: the lower one contains clear fingerprints of optical phonon modes while the higher scale indicates a presence of strong electron-electron interaction. The result suggests that LiFeAs is a phonon mediated superconductor with strongly enhanced electronic density of states at the Fermi level.Comment: reevaluated electron-phonon coupling strength, added reference
    • …
    corecore