10 research outputs found

    How many antiviral small interfering RNAs may be encoded by the mammalian genomes?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The discovery of RNA interference phenomenon (RNAi) and understanding of its mechanisms has revolutionized our views on many molecular processes in the living cell. Among the other, RNAi is involved in silencing of transposable elements and in inhibition of virus infection in various eukaryotic organisms. Recent experimental studies demonstrate few cases of viral replication suppression via complementary interactions between the mammalian small RNAs and viral transcripts.</p> <p>Presentation of the hypothesis</p> <p>It was found that >50% of the human genome is transcribed in different cell types and that these transcripts are mainly not associated with known protein coding genes, but represent non-coding RNAs of unknown functions. We propose a hypothesis that mammalian DNAs encode thousands RNA motifs that may serve for antiviral protection. We also presume that the evolutional success of some groups of genomic repeats and, in particular, of transposable elements (TEs) may be due to their ability to provide antiviral RNA motifs to the host organism. Intense genomic repeat propagation into the genome would inevitably cause bidirectional transcription of these sequences, and the resulting double-stranded RNAs may be recognized and processed by the RNA interference enzymatic machinery. Provided that these processed target motifs may be complementary to viral transcripts, fixation of the repeats into the host genome may be of a considerable benefit to the host. It fits with our bioinformatical data revealing thousands of 21-28 bp long motifs identical between human DNA and human-pathogenic adenoviral and herpesviral genomes. Many of these motifs are transcribed in human cells, and the transcribed part grows proportionally to their lengths. Many such motifs are included in human TEs. For example, one 23 nt-long motif that is a part of human abundant Alu retrotransposon, shares sequence identity with eight human adenoviral genomes.</p> <p>Testing the hypothesis</p> <p>This hypothesis could be tested on various mammalian species and viruses infecting mammalian cells.</p> <p>Implications of the hypothesis</p> <p>This hypothesis proposes that mammalian organisms may use their own genomes as sources of thousands of putative interfering RNA motifs that can be recruited to repress intracellular pathogens like proliferating viruses.</p> <p>Reviewers</p> <p>This article was reviewed by Eugene V. Koonin, Valerian V. Dolja and Yuri V. Shpakovski.</p

    Moonlight functions of glycolytic enzymes in cancer

    Get PDF
    Since an extensive genome research has started, basic principle “one gene—one protein—one function” was significantly revised. Many proteins with more than one function were identified and characterized as “moonlighting” proteins, which activity depend not only on structural peculiarities but also on compartmentation and metabolic environment. It turned out that “housekeeping” glycolytic enzymes show important moonlight functions such as control of development, proliferation, apoptosis, migration, regulation of transcription and cell signaling. Glycolytic enzymes emerged very early in evolution and because of the limited content of genomes, they could be used as ancient regulators for intercellular and intracellular communication. The multifunctionality of the constitutively expressed enzymes began to serve cancer cell survival and growth. In the present review we discuss some moonlight functions of glycolytic enzymes that important for malignant transformation and tumor growth

    Novel robust biomarkers for human bladder cancer based on activation of intracellular signaling pathways

    Get PDF
    Sherpa Romeo blue journal. Open access article. Creative Commons Attribution 3.0 License (CC BY 3.0) applies.We recently proposed a new bioinformatic algorithm called OncoFinder for quantifying the activation of intracellular signaling pathways. It was proved advantageous for minimizing errors of high-throughput gene expression analyses and showed strong potential for identifying new biomarkers. Here, for the first time, we applied OncoFinder for normal and cancerous tissues of the human bladder to identify biomarkers of bladder cancer. Using Illumina HT12v4 microarrays, we profiled gene expression in 17 cancer and seven non-cancerous bladder tissue samples. These experiments were done in two independent laboratories located in Russia and Canada. We calculated pathway activation strength values for the investigated transcriptomes and identified signaling pathways that were regulated differently in bladder cancer (BC) tissues compared with normal controls. We found, for both experimental datasets, 44 signaling pathways that serve as excellent new biomarkers of BC, supported by high area under the curve (AUC) values. We conclude that the OncoFinder approach is highly efficient in finding new biomarkers for cancer. These markers are mathematical functions involving multiple gene products, which distinguishes them from “traditional” expression biomarkers that only assess concentrations of single genes.Ye

    Characteristic patterns of microRNA expression in human bladder cancer

    No full text
    MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression. Their altered expression and functional activity have been observed in many human cancers. MiRNAs represent promising diagnostic and prognostic molecular biomarkers, and also serve as novel therapeutic targets. We performed a systematic analysis of scientific reports that link differences in miRNA expression with the pathogenesis of bladder cancer. This literature review is the first comprehensive database of miRNA molecules with biased expression profiles in bladder cancer. Among the 95 differentially expressed miRNAs that we identified from the literature, we classify 48 as upregulated in bladder cancer, 35 as downregulated, and 12 as contradictory (contradictory data were reported in one or more studies on the gene). In addition, we discuss the possible roles of differentially expressed miRNAs in the regulation of intracellular signaling pathways in bladder cancer

    Evolutionary View on Lactate-Dependent Mechanisms of Maintaining Cancer Cell Stemness and Reprimitivization

    No full text
    The role of lactic acid (lactate) in cell metabolism has been significantly revised in recent decades. Initially, lactic acid was attributed to the role of a toxic end-product of metabolism, with its accumulation in the cell and extracellular space leading to acidosis, muscle pain, and other adverse effects. However, it has now become obvious that lactate is not only a universal fuel molecule and the main substrate for gluconeogenesis but also one of the most ancient metabolites, with a signaling function that has a wide range of regulatory activity. The Warburg effect, described 100 years ago (the intensification of glycolysis associated with high lactate production), which is characteristic of many malignant tumors, confirms the key role of lactate not only in physiological conditions but also in pathologies. The study of lactate&rsquo;s role in the malignant transformation becomes more relevant in the light of the &ldquo;atavistic theory of carcinogenesis,&rdquo; which suggests that tumor cells return to a more primitive hereditary phenotype during microevolution. In this review, we attempt to summarize the accumulated knowledge about the functions of lactate in cell metabolism and its role in the process of carcinogenesis and to consider the possible evolutionary significance of the Warburg effect

    Moonlight functions of glycolytic enzymes in cancer

    Get PDF
    Since an extensive genome research has started, basic principle “one gene—one protein—one function” was significantly revised. Many proteins with more than one function were identified and characterized as “moonlighting” proteins, which activity depend not only on structural peculiarities but also on compartmentation and metabolic environment. It turned out that “housekeeping” glycolytic enzymes show important moonlight functions such as control of development, proliferation, apoptosis, migration, regulation of transcription and cell signaling. Glycolytic enzymes emerged very early in evolution and because of the limited content of genomes, they could be used as ancient regulators for intercellular and intracellular communication. The multifunctionality of the constitutively expressed enzymes began to serve cancer cell survival and growth. In the present review we discuss some moonlight functions of glycolytic enzymes that important for malignant transformation and tumor growth

    Evolutionary View on Lactate-Dependent Mechanisms of Maintaining Cancer Cell Stemness and Reprimitivization

    No full text
    The role of lactic acid (lactate) in cell metabolism has been significantly revised in recent decades. Initially, lactic acid was attributed to the role of a toxic end-product of metabolism, with its accumulation in the cell and extracellular space leading to acidosis, muscle pain, and other adverse effects. However, it has now become obvious that lactate is not only a universal fuel molecule and the main substrate for gluconeogenesis but also one of the most ancient metabolites, with a signaling function that has a wide range of regulatory activity. The Warburg effect, described 100 years ago (the intensification of glycolysis associated with high lactate production), which is characteristic of many malignant tumors, confirms the key role of lactate not only in physiological conditions but also in pathologies. The study of lactate’s role in the malignant transformation becomes more relevant in the light of the “atavistic theory of carcinogenesis,” which suggests that tumor cells return to a more primitive hereditary phenotype during microevolution. In this review, we attempt to summarize the accumulated knowledge about the functions of lactate in cell metabolism and its role in the process of carcinogenesis and to consider the possible evolutionary significance of the Warburg effect

    A systematic experimental evaluation of microRNA markers of human bladder cancer

    Get PDF
    Background: MicroRNAs (miRNAs) are a class of small RNAs that regulate gene expression. They are aberrantly expressed in many human cancers and are potential therapeutic targets and molecular biomarkers. Methods: In this study, we for the first time validated the reported data on the entire set of published differential miRNAs (102 in total) through a series of transcriptome-wide experiments. We have conducted genome-wide miRNA profiling in 17 urothelial carcinoma bladder tissues and in nine normal urothelial mucosa samples using three methods: (1) An Illumina HT-12 microarray hybridization (MA) analysis (2) a suppression-subtractive hybridization (SSH) assay followed by deep sequencing (DS) and (3) DS alone. Results: We show that DS data correlate with previously published information in 87% of cases, whereas MA and SSH data have far smaller correlations with the published information (6 and 9% of cases, respectively). qRT-PCR tests confirmed reliability of the DS data. Conclusions: Based on our data, MA and SSH data appear to be inadequate for studying differential miRNA expression in the bladder. Impact: We report the first comprehensive validated database of miRNA markers of human bladder cancer

    Alkylresorcinols as a New Type of Gut Microbiota Regulators Influencing Immune Therapy Efficiency in Lung Cancer Treatment

    No full text
    Background. Alkylresorcinols (ARs) are polyphenolic compounds of microbial origin with a wide spectrum of biological activities and are potentially involved in host immune functioning. The present study is aimed at evaluating alterations in AR content in blood serum and faeces from healthy donors and patients with lung cancer in connection with response to immune checkpoint inhibitor (ICI) therapy to estimate the regulatory potential of AR. Methods. Quantitative analysis of AR levels, as well as other microbial metabolites in blood serum and faeces, was performed using gas chromatography with mass spectrometric detection; estimation of lymphocyte subsets was performed by flow cytometry; faecal microbiota transplantation (FMT) from lung cancer patients after ICI therapy to germ-free mice was performed to explore whether the intestinal microbiota could produce AR molecules. Results. AR concentrations in both faeces and serum differ dramatically between healthy and lung cancer donors. The significant increase in AR concentrations in mouse faeces after FMT points to the microbial origin of ARs. For several ARs, there were strong positive and negative correlations in both faeces and serum with immune cells and these interrelationships differed between the therapy-responsive and nonresponsive groups. Conclusions. The content of ARs may influence the response to ICI therapy in lung cancer patients. ARs may be considered regulatory molecules that determine the functioning of antitumor immunity

    Alkylresorcinols as New Modulators of the Metabolic Activity of the Gut Microbiota

    No full text
    Alkylresorcinols (ARs) are polyphenolic compounds with a wide spectrum of biological activities and are potentially involved in the regulation of host metabolism. The present study aims to establish whether ARs can be produced by the human gut microbiota and to evaluate alterations in content in stool samples as well as metabolic activity of the gut microbiota of C57BL, db/db, and LDLR (−/−) mice according to diet specifications and olivetol (5-n-pentylresorcinol) supplementation to estimate the regulatory potential of ARs. Gas chromatography with mass spectrometric detection was used to quantitatively analyse AR levels in mouse stool samples; faecal microbiota transplantation (FMT) from human donors to germ-free mice was performed to determine whether the intestinal microbiota could produce AR molecules; metagenome sequencing analysis of the mouse gut microbiota followed by reconstruction of its metabolic activity was performed to investigate olivetol’s regulatory potential. A significant increase in the amounts of individual members of AR homologues in stool samples was revealed 14 days after FMT. Supplementation of 5-n-Pentylresorcinol to a regular diet influences the amounts of several ARs in the stool of C57BL/6 and LDLR (−/−) but not db/db mice, and caused a significant change in the predicted metabolic activity of the intestinal microbiota of C57BL/6 and LDLR (−/−) but not db/db mice. For the first time, we have shown that several ARs can be produced by the intestinal microbiota. Taking into account the dependence of AR levels in the gut on olivetol supplementation and microbiota metabolic activity, AR can be assumed to be potential quorum-sensing molecules, which also influence gut microbiota composition and host metabolism
    corecore