15 research outputs found
Experimental pressure versus temperature isochoric – isoplethic curves for n-pentane – dimethyl ether, n-pentane – dimethyl ether – polybutadiene and n-pentane – dimethyl ether – polybutadiene– hydrogen at high pressures
Loci of isochoric - isoplethic experimental phase equilibrium data, were determined for the binary mixture dimethyl ether (DME) + n-pentane (C5); the ternary mixture: DME + C5 + polybutadiene (PB); and the quaternary mixture DME + C5 + PB + hydrogen (H2). Binary experiments were performed at varying overall density (ρ) and varying quantity of C5. Ternary experiments were performed at varying ρ and varying relative quantities of each light solvent. In the case of quaternary mixtures, the mass fraction of polymer was kept constant, and the amount of H2 and ρ were varied. The experimental data obtained for binary and ternary mixtures were correlated using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) equation of state (EoS)
Diagrama de equilibrio reactivo multicomponente monofásico o multifásico: cómputo de isopletas reactivas
El modelado del equilibrio químico y de fases simultáneo (EQFS) es importante en el diseño y simulación de reactores ya que permite estimar condiciones operativas adecuadas, y límites para las máximas conversiones de reactivos que se pueden alcanzar, favoreciendo la obtención de productos específicos con una pureza adecuada. En este trabajo se identifican algunos de los tipos de curvas constitutivas de diagramas completos de equilibrio de fases fluidas, de sistemas reactivos, a composición global inicial (z0) especificada, y se propone una metodología para su cálculo. A este tipo de diagramas lo llamamos isopleta reactiva (IR). Las líneas de EQFS constitutivas de una IR consideradas en este trabajo son: a) envolvente de fases reactiva (EFR) (constituida a su vez por curvas de puntos de burbuja, de rocío y de niebla), b) envolvente trifásica reactiva (E3FR) y c) curvas de conversión constante (CsCC). Las IsRs son útiles para estimar la condición de fases y las conversiones de reactivos máximas que se pueden alcanzar a presión (P) y temperatura (T) especificadas, y para la observación rápida del comportamiento del sistema en amplios rangos de condiciones. Los algoritmos desarrollados demostraron ser robustos para el cómputo de EsFRs, Es3FRs y CsCC altamente no lineales.Centro de Investigación y Desarrollo en Ciencias Aplicada
Incorporación de la posibilidad de precipitación de soluciones sólidas en el cálculo de diagramas de fases reactivos a composición global inicial especificada
La consideración de la precipitación de fases sólidas es de importancia en el cálculo del equilibrio químico y de fases simultáneo (EQFS), pues, entre otras cosas, establece los límites en que el sistema reactivo multicomponente se presenta en estado fluido, sea este monofásico o multifásico. En el presente trabajo se proponen algoritmos de cómputo que incorporan la posibilidad de precipitación de soluciones sólidas (SSs) a diagramas de equilibrio entre fases, de sistemas reactivos multicomponente, a composición global inicial (z0) especificada, en que ocurren múltiples reacciones químicas (RQs), cubriendo amplios rangos de condiciones. En otras palabras, se proponen aquí algoritmos para completar la generación de isopletas reactivas (IRs) considerando tanto el estado fluido como el estado sólido. Los nuevos objetos que aparecen en una IR al introducir la posibilidad de precipitación de SSs son: [a] tramos de la envolvente de fases de los tipos sólido(S)-fluído(F) o S-S, y [b] curvas trifásicas en la zona heterogénea del diagrama de fases de los tipos SFF y SSF. Las SSs se modelan aquí utilizando el reciente enfoque ingenieril denominado “Solid Solution Approach”. La mejor comprensión del EQFS provista por las IRs debería ser de ayuda en el diseño y en la operación de reactores.Centro de Investigación y Desarrollo en Ciencias Aplicada
Automated Generation of Phase Diagrams for Binary Systems with Azeotropic Behavior
In this work, we propose a computational strategy and methods for the automated calculation of complete loci of homogeneous azeotropy of binary mixtures and the related Pxy and Txy diagrams for models of the equation-of-state (EOS) type. The strategy consists of first finding the system's azeotropic end points (AEPs). These can exist on vapor-liquid (VL) critical lines (CAEPs), on liquid-liquid-vapor (LLV) lines (HAEPs), and on pure-compound vapor pressure lines (PAEPs). Next, for the chosen binary system, we generate one or two azeotropic lines. Each of these lines has, as its starting point, one of the previously identified AEPs. We calculate the azeotropic lines using a numerical continuation method that solves the nonlinear azeotropic system of equations under a range of conditions and efficiently tracks entire azeotropic curves. We have integrated our strategy for calculating azeotropic lines into a general algorithm for the single-run computation of binary global phase equilibrium diagrams (GPEDs). GPEDs are defined by pure-compound, critical, LLV, and azeotropic lines. We implemented this general algorithm in the computer program GPEC (Global Phase Equilibrium Calculations), which makes it possible to evaluate, at a glance, the behavior of a given model-parameter values combination, for a chosen model and binary system.Fil: Cismondi Duarte, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Michelsen, Michael. Technical University of Denmark; DinamarcaFil: Zabaloy, Marcelo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentin
Diagrama de equilibrio reactivo multicomponente monofásico o multifásico: cómputo de isopletas reactivas
El modelado del equilibrio químico y de fases simultáneo (EQFS) es importante en el diseño y simulación de reactores ya que permite estimar condiciones operativas adecuadas, y límites para las máximas conversiones de reactivos que se pueden alcanzar, favoreciendo la obtención de productos específicos con una pureza adecuada. En este trabajo se identifican algunos de los tipos de curvas constitutivas de diagramas completos de equilibrio de fases fluidas, de sistemas reactivos, a composición global inicial (z0) especificada, y se propone una metodología para su cálculo. A este tipo de diagramas lo llamamos isopleta reactiva (IR). Las líneas de EQFS constitutivas de una IR consideradas en este trabajo son: a) envolvente de fases reactiva (EFR) (constituida a su vez por curvas de puntos de burbuja, de rocío y de niebla), b) envolvente trifásica reactiva (E3FR) y c) curvas de conversión constante (CsCC). Las IsRs son útiles para estimar la condición de fases y las conversiones de reactivos máximas que se pueden alcanzar a presión (P) y temperatura (T) especificadas, y para la observación rápida del comportamiento del sistema en amplios rangos de condiciones. Los algoritmos desarrollados demostraron ser robustos para el cómputo de EsFRs, Es3FRs y CsCC altamente no lineales.Centro de Investigación y Desarrollo en Ciencias Aplicada