41 research outputs found

    Segregation in noninteracting binary mixture

    Full text link
    Process of stripe formation is analyzed numerically in a binary mixture. The system consists of particles of two sizes, without any direct mutual interactions. Overlapping of large particles, surrounded by a dense system of smaller particles induces indirect entropy driven interactions between large particles. Under an influence of an external driving force the system orders and stripes are formed. Mean width of stripes grows logarithmically with time, in contrast to a typical power law temporal increase observed for driven interacting lattice gas systems. We describe the mechanism responsible for this behavior and attribute the logarithmic growth to a random walk of large particles in a random potential due to the small ones.Comment: 5 pages, 4 figure

    Single shot imaging of trapped Fermi gas

    Full text link
    Recently developed techniques allow for simultaneous measurements of the positions of all ultra cold atoms in a trap with high resolution. Each such single shot experiment detects one element of the quantum ensemble formed by the cloud of atoms. Repeated single shot measurements can be used to determine all correlations between particle positions as opposed to standard measurements that determine particle density or two-particle correlations only. In this paper we discuss the possible outcomes of such single shot measurements in case of cloud of ultra-cold non-interacting Fermi atoms. We show that the Pauli exclusion principle alone leads to correlations between particle positions that originate from unexpected spatial structures formed by the atoms
    corecore