4,710 research outputs found

    Microstructure and mechanical properties of ductile aluminium alloy manufactured by recycled materials

    Get PDF
    The present paper introduces the microstructure and mechanical properties of the Al-Mg- Si-Mn alloy made by recycled materials, in which the impurity levels of iron are mainly concerned. It is found that the increased Fe content reduces the ductility and yield strength but slightly increases the UTS of the diecast alloy. The tolerable Fe content is 0.45wt.%, at which the recycled alloys are still able to produce castings with the mechanical properties of yield strength over 140MPa, UTS over 280MPa and elongation over 15%.The Fe content is steadily accumulated in the alloy with the increase of recycle times. However, after 13 cycles, the recycled alloys are still able to produce ductile alloys with satisfied mechanical properties.The TSB (UK

    Collaboration interface in Smart Metering Scheme

    Get PDF
    Theme: Towards a safe, reliable, sustainable intelligent power systemPaper no. I9FP0475Smart meter provides intelligence to serve demand side management. The development of electrical-load-signature technology provides an effective base to enable condition-based monitoring and energy-collaboration management among stakeholders. In a smart metering scheme, the three direct contributors are supplier, estate manager and consumer. Affiliated members are appliance manufacturers and sustainability managers. It is perceived that when a platform can be developed to permit members sharing information, trading benefits, and recommending energy plans. The development of a collaboration interface is to assist the principal members in supporting each other as neighboring aide in these activities. This paper discusses on philosophies and models that shall develop the concepts; and shares the development of this interface.postprintThe 15th International Conference on Electrical Engineering (ICEE 2009), Shenyang, China, 5-9 July 2009

    Biodegradable cationic poly(carbonates): effect of varying side chain hydrophobicity on key aspects of gene transfection

    Get PDF
    The degree of hydrophobicity in cationic polymers plays an important but often underappreciated role in the safety and efficacy of gene delivery processes. In order to further elucidate structure-activity relationships of biodegradable cationic poly(carbonate) gene carriers, we synthesized a series of narrowly dispersed homo-polymers via metal-free organocatalytic living ring-opening polymerization (ROP) of cyclic carbonate monomers bearing either alkyl (propyl, hexyl or nonyl) or 4-methyl benzyl halide side chains. The polymers were then quaternized using bis-tertiary amines to install both quaternary ammoniums and tertiary amines for DNA binding and endosomal escape, respectively. Among the polymers with similar molecular lengths and charge densities, it was found that an increase in side chain alkyl spacer length from 3 to 6 carbons significantly enhanced cellular uptake and luciferase gene expression in HepG2 and HeLa cell lines without causing overt hemolysis and cytotoxicity. A further increase of side chain alkyl length to 9 carbons, however, led to a drastic decline in gene expression due to increased cellular toxicity, which was correlated with an increased disruption and lysis of red blood cell membranes. Interestingly, the incorporation of an aromatic 4-methyl benzyl spacer increased DNA binding strength, reduced particle sizes of resultant DNA complexes, and enhanced cellular uptake, leading to improved luciferase gene expression, albeit with higher levels of hemolysis and cytotoxicity. Taken together, the findings of this study demonstrate that a delicate balance between cationic charge density and hydrophobicity could be achieved by utilizing a hexyl spacer in the side chains of cationic poly(carbonates), hence providing insights on the future development of non-viral cationic polymeric gene delivery systems. Statement of Significance: Owing to their ease of synthesis and well-controlled polymerization, biodegradable cationic poly(carbonates) have emerged as a highly promising class of biomaterials for gene delivery. The hydrophobicity of side chains in cationic polymers plays an important but often underappreciated role in influencing key aspects of gene transfection. In our efforts to improve gene transfection and understand structure-activity relationships, we synthesized a series of cationic polymers bearing a common poly(carbonate) backbone, and with side chains containing various hydrophobic spacers (propyl, hexyl, 4-methyl benzyl or nonyl) before the cationic moiety. A moderate degree of hydrophobicity was optimal as the cationic poly(carbonate) with hexyl side chains mediated high gene transfection efficiencies while causing low cytotoxicities. (111 words

    Unilatéralisme américain: contribution à une conception réaliste du Droit International Public

    Get PDF
    Some inherent limitations exist in current Layered Manufacturing (LM) technologies (e.g. little choice of material, small part size and poor surface quality) and traditional NC machining (e.g. the confinement of tool accessibility to internal features). In order to overcome these limitations, a rapid manufacturing method called Robot based Layered Manufacturing (RoLM in brief) is developed. A robot with a milling cutter mounted on the end-effector is used to build a part layer by layer. Given a part model, the determination of build orientation is the first step in the manufacturing cycle and has large effects on the surface quality and build time. In this paper, a set of criteria is proposed to rank the build orientations for RoLM by considering mainly part accuracy and build time. Algorithms are developed to calculate tool accessibility, part stability, and the number of required support for overhangs.link_to_subscribed_fulltex

    T-DNA integration patterns in transgenic maize lines mediated by Agrobacterium tumefaciens

    Get PDF
    To explore transfer deoxyribonucleic acid (T-DNA) integration patterns in the maize genome, we improved the protocol of thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR), and amplified the flanking sequences around T-DNA integration sites from 70 independent transgenic maize lines mediated by Agrobacterium tumefaciens. Out of 64 specific amplified fragments, 32 and 9 are homologous to the sequences of the maize genome and the expression plasmid, respectively. For 26 of them, a filler sequence was found flanking the cleavage sites. These results demonstrate that cleavage occurs not only during the T-DNA borders but also inside or outside the borders. The border sequences and some inside sequences can be deleted, and filler sequences can be inserted. Illegitimate recombination is a major pattern of T-DNA integration, while some hot spots and preference are present on maize chromosomes.Key words: Agrobacterium tumefaciens, maize, thermal asymmetric interlaced PCR, transfer DNA,transgenics

    Comparative study of intestine length, weight and digestibility on different body weight chickens

    Get PDF
    This experiment was conducted to compare the difference of digestibility on different body weight chickens. Twenty-seven (27) 58-week-old New Yangzhou Chickens of three grade sizes (small 2.0 kg, medium 2.5 kg, and large 3.0 kg) were selected and distributed into three groups (Groups 1 to 3) of nine birds/group, and each group was represented by three replicates. Nutrient retention ratio was determined by adopting whole gather excretion method. In the end of metabolism experiment, all the birds were killed, and the intestine length and intestine weight were measured. Results show that, the amount of feed intake and excretion increased along with body weight gain; the feed intake and excretion in group 3 were significantly higher than that in group 1 (P < 0.05). The sidelong lengths in the three groups were evidently different. Although, the intestinal length as well as the length of the jejunum, ileum and rectum appeared to be gradually improved with the body weight increase, there were no significant differences among the three groups (P > 0.05). The weightier the intestines, the more was body weight of the birds. The retention ratio of energy, crude fiber and neutral detergent fiber increased with body weight gain, but the differences were not significant (P > 0.05). It was concluded that there was no correlation between body weight and digestibility.Keywords: Digestibility, body weight, cock.African Journal of Biotechnology Vol. 12(32), pp. 5097-510

    Size-affected shear-band speed in bulk metallic glasses

    Get PDF
    2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Thylakoid-bound ascorbate peroxidase increases resistance to salt stress and drought in Brassica napus

    Get PDF
    Reactive oxygen species (ROS) are cellular indicators of stress. In plants, they function as secondary messengers in response to environmental stress. Ascorbate peroxidase (APX) is an important enzyme directly involved in the scavenging of ROS. In this study, we aimed at identifying the function of the Brassica napus thylakoid APX (tAPX). Germination efficiencies of seeds of B. napus plants over expressing tAPX were higher than those of the seeds of the control plants; this was true both on Murashige and Skoog medium with 300 mM mannitol and with 150 mM NaCl. Further experiments showed that 40-day-old seedlings of the control plants turned yellow, withered, and subsequently died, when treated with 150 mM NaCl for 12 days. In contrast, transgenic plants over expressing tAPX survived this treatment and had at least three green leaves at the end of the experiment. When 40-dayold seedlings were withheld water for 10 days, followed by a 2 day recovery, the control plants exhibited smaller leaves and shorter stems in comparison to tAPX-over expressing plants. In addition, compared with control plants, tAPX-overexpressing plants show reduced hydrogen peroxide accumulation and increased APX relative activity. Our results demonstrate that tAPX plays an important role in resistance to salt stress and drought in plants.Key words: tAPX, transgenic lines, Brassica napus, salt stress, water deficiency

    Effects of L-arginine on intestinal development and endogenous arginine-synthesizing enzymes in neonatal pigs

    Get PDF
    This study aimed to investigate the effects of dietary L-arginine supplementation on the intestinal development of neonatal piglets and the underlying mechanisms. 36 neonatal piglets were randomly allocated into three diet groups: control group (supplemented with 0% L-arginine), 0.4 and 0.8% Larginine groups. When compared with the control, dietary supplementation with L-arginine decreased (P<0.05) blood urea nitrogen (BUN), and improved (P<0.05) serum T3 and insulin level of the piglets on day 11. Arginine and its metabolites (citrulline and ornithine) were elevated, additionally, dietary supplementation with 0.8% L-arginine markedly enhanced jejunal villus height, villus area on day 11 and D-xylose absorption rate on day 19. Dietary supplementation with 0.8% L-arginine increased (P<0.05) activities of maltose and lactose on day 18, respectively. This effect correlated with profound change in enzyme activities as inducible nitric oxide synthetase (iNOS), glutamine synthetase (GS) and ornithine decarboxylase (ODC) were elevated on day 18. The concentrations of spermine was increased (P<0.05) by L-arginine supplementation on day 18. These results collectively suggest that dietary  Larginine supplementation improves protein synthesis and intestinal development of the neonatal pigs, the underlying mechanism includes dietary L-arginine supplementation which regulated the productions of intestinal polyamine in jejunum, and stimulated endogenous arginine-synthesizing enzymes in neonatal piglets.Key words: Neonatal pig, L-arginine, intestinal development, arginine-synthetases

    Double In Situ Approach for the Preparation of Polymer Nanocomposite with Multi-functionality

    Get PDF
    A novel one-step synthetic route, the double in situ approach, is used to produce both TiO2nanoparticles and polymer (PET), and simultaneously forming a nanocomposite with multi-functionality. The method uses the release of water during esterification to hydrolyze titanium (IV) butoxide (Ti(OBu)4) forming nano-TiO2in the polymerization vessel. This new approach is of general significance in the preparation of polymer nanocomposites, and will lead to a new route in the synthesis of multi-functional polymer nanocomposites
    corecore