159 research outputs found

    Baclofen for maintenance treatment of opioid dependence: A randomized double-blind placebo-controlled clinical trial [ISRCTN32121581]

    Get PDF
    BACKGROUND: Results of preclinical studies suggest that the GABA(B )receptor agonist baclofen may be useful in treatment of opioid dependence. This study was aimed at assessing the possible efficacy of baclofen for maintenance treatment of opioid dependence. METHODS: A total of 40 opioid-dependent patients were detoxified and randomly assigned to receive baclofen (60 mg/day) or placebo in a 12-week, double blind, parallel-group trial. Primary outcome measure was retention in treatment. Secondary outcome measures included opioids and alcohol use according to urinalysis and self-report ratings, intensity of opioid craving assessed with a visual analogue scale, opioid withdrawal symptoms as measured by the Short Opiate Withdrawal Scale and depression scores on the Hamilton inventory. RESULTS: Treatment retention was significantly higher in the baclofen group. Baclofen also showed a significant superiority over placebo in terms of opiate withdrawal syndrome and depressive symptoms. Non-significant, but generally favorable responses were seen in the baclofen group with other outcome measures including intensity of opioid craving and self-reported opioid and alcohol use. However, no significant difference was seen in the rates of opioid-positive urine tests. Additionally, the drug side effects of the two groups were not significantly different. CONCLUSION: The results support further study of baclofen in the maintenance treatment of opioid dependence

    Prediction of protein structural classes for low-homology sequences based on predicted secondary structure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prediction of protein structural classes (<it>α</it>, <it>β</it>, <it>α </it>+ <it>β </it>and <it>α</it>/<it>β</it>) from amino acid sequences is of great importance, as it is beneficial to study protein function, regulation and interactions. Many methods have been developed for high-homology protein sequences, and the prediction accuracies can achieve up to 90%. However, for low-homology sequences whose average pairwise sequence identity lies between 20% and 40%, they perform relatively poorly, yielding the prediction accuracy often below 60%.</p> <p>Results</p> <p>We propose a new method to predict protein structural classes on the basis of features extracted from the predicted secondary structures of proteins rather than directly from their amino acid sequences. It first uses PSIPRED to predict the secondary structure for each protein sequence. Then, the <it>chaos game representation </it>is employed to represent the predicted secondary structure as two time series, from which we generate a comprehensive set of 24 features using <it>recurrence quantification analysis</it>, <it>K-string based information entropy </it>and <it>segment-based analysis</it>. The resulting feature vectors are finally fed into a simple yet powerful Fisher's discriminant algorithm for the prediction of protein structural classes. We tested the proposed method on three benchmark datasets in low homology and achieved the overall prediction accuracies of 82.9%, 83.1% and 81.3%, respectively. Comparisons with ten existing methods showed that our method consistently performs better for all the tested datasets and the overall accuracy improvements range from 2.3% to 27.5%. A web server that implements the proposed method is freely available at <url>http://www1.spms.ntu.edu.sg/~chenxin/RKS_PPSC/</url>.</p> <p>Conclusion</p> <p>The high prediction accuracy achieved by our proposed method is attributed to the design of a comprehensive feature set on the predicted secondary structure sequences, which is capable of characterizing the sequence order information, local interactions of the secondary structural elements, and spacial arrangements of <it>α </it>helices and <it>β </it>strands. Thus, it is a valuable method to predict protein structural classes particularly for low-homology amino acid sequences.</p

    Downgrading MELD Improves the Outcomes after Liver Transplantation in Patients with Acute-on-Chronic Hepatitis B Liver Failure

    Get PDF
    Background: High score of model for end-stage liver diseases (MELD) before liver transplantation (LT) indicates poor prognosis. Artificial liver support system (ALSS) has been proved to effectively improve liver and kidney functions, and thus reduce the MELD score. We aim to evaluate whether downgrading MELD score could improve patient survival after LT. Methodology/Principal Findings: One hundred and twenty-six LT candidates with acute-on-chronic hepatitis B liver failure and MELD score 30wereincludedinthisprospectivestudy.Ofthe126patients,42receivedemergencyLTwithin72h(ELTgroup)andtheother84weregivenALSSassalvagetreatment.Ofthe84patients,33werefoundtohavereducedMELDscore(,30)onthedayofLT(DGMgroup),51underwentLTwithpersistenthighMELDscore(NDGMgroup).Themedianwaitingtimeforadonorwas10forDGMgroupand9.5daysforNDGMgroup.InNDGMgroupthereisasignificantlyhigheroverallmortality(43.130 were included in this prospective study. Of the 126 patients, 42 received emergency LT within 72 h (ELT group) and the other 84 were given ALSS as salvage treatment. Of the 84 patients, 33 were found to have reduced MELD score (,30) on the day of LT (DGM group), 51 underwent LT with persistent high MELD score (N-DGM group). The median waiting time for a donor was 10 for DGM group and 9.5 days for N-DGM group. In N-DGM group there is a significantly higher overall mortality (43.1%) than that in ELT group (16.7%) and DGM group (15.2%). N-DGM (vs. ECT and DGM) was the only independent risk factor of overall mortality (P = 0.003). Age.40 years and the interval from last ALSS to LT.48 h were independent negative influence factors of downgrading MELD. Conclusions/Significance: Downgrading MELD for liver transplant candidates with MELD score 30 was effective i

    Metallothionein (MT) -I and MT-II Expression Are Induced and Cause Zinc Sequestration in the Liver after Brain Injury

    Get PDF
    Experiments with transgenic over-expressing, and null mutant mice have determined that metallothionein-I and -II (MT-I/II) are protective after brain injury. MT-I/II is primarily a zinc-binding protein and it is not known how it provides neuroprotection to the injured brain or where MT-I/II acts to have its effects. MT-I/II is often expressed in the liver under stressful conditions but to date, measurement of MT-I/II expression after brain injury has focused primarily on the injured brain itself. In the present study we measured MT-I/II expression in the liver of mice after cryolesion brain injury by quantitative reverse-transcriptase PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) with the UC1MT antibody. Displacement curves constructed using MT-I/II knockout (MT-I/II−/−) mouse tissues were used to validate the ELISA. Hepatic MT-I and MT-II mRNA levels were significantly increased within 24 hours of brain injury but hepatic MT-I/II protein levels were not significantly increased until 3 days post injury (DPI) and were maximal at the end of the experimental period, 7 DPI. Hepatic zinc content was measured by atomic absorption spectroscopy and was found to decrease at 1 and 3 DPI but returned to normal by 7DPI. Zinc in the livers of MT-I/II−/− mice did not show a return to normal at 7 DPI which suggests that after brain injury, MT-I/II is responsible for sequestering elevated levels of zinc to the liver. Conclusion: MT-I/II is up-regulated in the liver after brain injury and modulates the amount of zinc that is sequestered to the liver

    Susceptibility of Pancreatic Beta Cells to Fatty Acids Is Regulated by LXR/PPARα-Dependent Stearoyl-Coenzyme A Desaturase

    Get PDF
    Chronically elevated levels of fatty acids-FA can cause beta cell death in vitro. Beta cells vary in their individual susceptibility to FA-toxicity. Rat beta cells were previously shown to better resist FA-toxicity in conditions that increased triglyceride formation or mitochondrial and peroxisomal FA-oxidation, possibly reducing cytoplasmic levels of toxic FA-moieties. We now show that stearoyl-CoA desaturase-SCD is involved in this cytoprotective mechanism through its ability to transfer saturated FA into monounsaturated FA that are incorporated in lipids. In purified beta cells, SCD expression was induced by LXR- and PPARα-agonists, which were found to protect rat, mouse and human beta cells against palmitate toxicity. When their SCD was inhibited or silenced, the agonist-induced protection was also suppressed. A correlation between beta cell-SCD expression and susceptibility to palmitate was also found in beta cell preparations isolated from different rodent models. In mice with LXR-deletion (LXRβ-/- and LXRαβ-/-), beta cells presented a reduced SCD-expression as well as an increased susceptibility to palmitate-toxicity, which could not be counteracted by LXR or PPARα agonists. In Zucker fatty rats and in rats treated with the LXR-agonist TO1317, beta cells show an increased SCD-expression and lower palmitate-toxicity. In the normal rat beta cell population, the subpopulation with lower metabolic responsiveness to glucose exhibits a lower SCD1 expression and a higher susceptibility to palmitate toxicity. These data demonstrate that the beta cell susceptibility to saturated fatty acids can be reduced by stearoyl-coA desaturase, which upon stimulation by LXR and PPARα agonists favors their desaturation and subsequent incorporation in neutral lipids

    Repeated administration of the GABAB receptor positive modulator BHF177 decreased nicotine self-administration, and acute administration decreased cue-induced reinstatement of nicotine seeking in rats

    Get PDF
    Abstract: Rationale γ\gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain and is implicated in the modulation of central reward processes. Acute or chronic administration of GABAB_B receptor agonists or positive modulators decreased self-administration of various drugs of abuse. Furthermore, GABAB_B receptor agonists inhibited cue-induced reinstatement of nicotine- and cocaine-seeking behavior. Because of their fewer adverse side effects compared with GABAB_B receptor agonists, GABAB_B receptor positive modulators are potentially improved therapeutic compounds for the treatment of drug dependence compared with agonists. Objectives and methods: We examined whether the acute effects of the GABAB_B receptor positive modulator N-[(1R,2R,4S)-bicyclo[2.2.1]hept-2-yl]-2-methyl-5-[4-(trifluoromethyl)phenyl]-4-pyrimidinamine (BHF177) on nicotine self- administration and food-maintained responding under a fixed-ratio 5 schedule of reinforcement were maintained after repeated administration. The effects of acute BHF177 administration on cue-induced nicotine- and food-seeking behavior, a putative animal model of relapse, were also examined. Results: Repeated administration of BHF177 for 14 days decreased nicotine self-administration, with small tolerance observed during the last 7 days of treatment, whereas BHF177 minimally affected food-maintained responding. Acute BHF177 administration dose-dependently blocked cue-induced reinstatement of nicotine-, but not food-, seeking behavior after a 10-day extinction period. Conclusions: These results showed that BHF177 selectively blocked nicotine self-administration and prevented cueinduced reinstatement of nicotine seeking, with minimal effects on responding for food and no effect on cue-induced reinstatement of food seeking. Thus, GABAB_B receptor positive modulators could be useful therapeutics for the treatment of different aspects of nicotine dependence by facilitating smoking cessation by decreasing nicotine intake and preventing relapse to smoking in humans
    corecore