1,200 research outputs found
Rail-bridge coupling element of unequal lengths for analysing train-track-bridge interaction systems
This paper presents a rail-bridge coupling element of unequal lengths, in which the length of a bridge element is longer than that of a rail element, to investigate the dynamic problem of train-track-bridge interaction systems. The equation of motion in matrix form is given for a train-track-bridge interaction system with the proposed element. The first two numerical examples with two types of bridge models are chosen to illustrate the application of the proposed element. The results show that, for the same length of rail element, (1) the dynamic responses of train, track and bridge obtained by the proposed element are almost identical to those obtained by the rail-bridge coupling element of equal length, and (2) compared with the rail-bridge coupling element of equal length, the proposed element can help to save computer time. Furthermore, the influence of the length of rail element on the dynamic responses of rail is significant. However, the influence of the length of rail element on the dynamic responses of bridge is insignificant. Therefore, the proposed element with a shorter rail element and a longer bridge element may be adopted to study the dynamic responses of a train-track-bridge interaction system. The last numerical example is to investigate the effects of two types of track models on the dynamic responses of vehicle, rail and bridge. The results show that: (1) there are differences of the dynamic responses of vehicle, rail and bridge based on the single-layer and double-layer track models, (2) the maximum differences increase with the increase of the mass of sleeper, (3) the double-layer track model is more accurate. Š 2011 Elsevier Inc.postprin
Pseudo-static tests of terminal stirrup-confined concrete-filled rectangular steel tubular columns
Š 2017 Elsevier Ltd This paper mainly presents a pseudo-static test program on 12 terminal stirrup-confined square concrete-filled steel tube (SCFT) columns and 14 rectangular SCFT columns under constant axial pressure. The effects of various factors on the hysteretic behavior of specimens are investigated. These factors include with or without stirrups, height of terminal stirrup region, equivalent stirrup ratio, stirrup form, loading direction, height-length ratio (L/B), length-width ratio (B/D), axial compression ratio (n) and sliding support. The failure mode, strain ratio, hysteretic curve, skeleton curve, ultimate bearing capacity, ductility, stiffness degradation, energy dissipation, as well as the residual deformation of the specimens are analyzed. The results indicate that: (1) When n is relatively larger, the bidirectional stirrups can effectively delay the local buckling of steel tube and greatly increase the ultimate bearing capacity, stiffness, equivalent damping viscosity index, residual deformation rate and ductility index, and further significantly improve the seismic behavior of the rectangular SCFT columns; (2) Axial pressure can improve the confinement effect from the steel tube to the core concrete, also bidirectional stirrups can directly confine the core concrete to decrease strain ratio of the steel tube; (3) With the same value of n, increasing the height of terminal stirrup region or increasing the equivalent stirrup ratio can effectively improve the seismic behavior of the rectangular SCFT columns; (4) The influence of loading direction, L/B and B/D on the ductility of rectangular SCFT columns are not obvious
Lipid control and use of lipid-regulating drugs for prevention of cardiovascular events in Chinese type 2 diabetic patients: a prospective cohort study
<p>Abstract</p> <p>Background</p> <p>Dyslipidaemia is an important but modifiable risk factor of cardiovascular disease (CVD) in type 2 diabetes. Yet, the effectiveness of lipid regulating drugs in Asians is lacking. We examined the effects of lipid control and treatment with lipid regulating drugs on new onset of CVD in Chinese type 2 diabetic patients.</p> <p>Methods</p> <p>In this prospective cohort consisting of 4521 type 2 diabetic patients without history of CVD and naïve for lipid regulating treatment recruited consecutively from 1996 to 2005, 371 developed CVD after a median follow-up of 4.9 years. We used Cox proportional hazard regression to obtain the hazard ratios (HR) of lipids and use of lipid regulating drugs for risk of CVD.</p> <p>Results</p> <p>The multivariate-adjusted HR (95% confidence interval) of CVD in patients with high LDL-cholesterol (⼠3.0 mmol/L) was 1.36 (1.08 - 1.71), compared with lower values. Using the whole range value of HDL-cholesterol, the risk of CVD was reduced by 41% with every 1 mmol/L increase in HDL-cholesterol. Plasma triglyceride did not predict CVD. Statins use was associated with lower CVD risk [HR = 0.66 (0.50 - 0.88)]. In sub-cohort analysis, statins use was associated with a HR of 0.60 (0.44 - 0.82) in patients with high LDL-cholesterol (⼠3.0 mmol/L) and 0.49 (0.28 - 0.88) in patients with low HDL-cholesterol. In patients with LDL-cholesterol < 3.0 mmol/L, use of fibrate was associated with HR of 0.34 (0.12 - 1.00). Only statins were effective in reducing incident CVD in patients with metabolic syndrome [(HR = 0.58(0.42--0.80)].</p> <p>Conclusions</p> <p>In Chinese type 2 diabetic patients, high LDL-cholesterol and low HDL-cholesterol predicted incident CVD. Overall, patients treated with statins had 40-50% risk reduction in CVD compared to non-users.</p
Recommended from our members
Finite element analysis and calculation method of residual flexural capacity of post-fire RC beams
Fire tests and subsequent bending tests of fourreinforced concrete (RC) beamswere performed. Based on these tests, the post-fire performance of RCbeams was further studied using finite element simulation through reasonable selection of suitable thermal and thermodynamic parameters of steel and concrete materials. A thermodynamic model of RC beams with three sides under fire was built using finite element analysis(FEA)software ABAQUS. The FEA model was validated with the results of fire tests. Different factors were taken into account for further parametric studies in fire using the proposed FE model.The results show that the main factors affecting the fire resistance of the beamsare the thickness of the concretecover, reinforcement ratio of longitudinal steel,the fire exposure timeandthe fire exposure sides. Based on the strength reduction formula at high temperature of steel and concrete, animproved section method was proposed to develop a calculation formula to calculate the flexural capacity of RC beams after fire. The theoretical calculation method proposed in this paper shows good agreement with FEA results, which can be used to calculate the flexuralcapacity of RC beams after fire
Spectroscopic characterization and properties of some bioactive peroxovanadium complexes in aqueous solution
Four bioactive peroxovanadium (pV) complexes-bpV(ox), bpV(bipy), bpV(phen). and bpV(pic), ([VO(O-2)(2)L](n-), where ligand L = oxalic acid dianion (ox), bipyridine(bipy), 1,10-phenanthroline(phen), and pyridine-2-carboxylic acid (pic), were synthesized,and characterized by V-51 NMR, H-1 NMR, C-13 NMR, ESI-MS, IR and elemental analysis. All H-1 and C-13 peaks were,assigned by 2D H-1-H-1 peaks were assigned by 2D H-1-H-1 COSY, HMQC and HMBC. Their stereochemical structures in solution were discussed according to the NMR signals of organic ligands. The descending stability order of complexes in aqueous solution determined by V-51 NMR is bpV(phen), bpV(bipy) bpV (pic) and pV(ox). The predominant decomposition patterns of these complexes were proposed on the basis of electrospray ionization MS (ESI-MS) and V-51 NMR. This work will facilitate the studies of interactions between pV complexes and target biomolecules in solution so as:to clarify structure-function relationship of these:bioactive complexes
Long-term exposure to hypoxia inhibits tumor progression of lung cancer in rats and mice
<p>Abstract</p> <p>Background</p> <p>Hypoxia has been identified as a major negative factor for tumor progression in clinical observations and in animal studies. However, the precise role of hypoxia in tumor progression has not been fully explained. In this study, we extensively investigated the effect of long-term exposure to hypoxia on tumor progression <it>in vivo.</it></p> <p>Methods</p> <p>Rats bearing transplanted tumors consisting of A549 human lung cancer cells (lung cancer tumor) were exposed to hypoxia for different durations and different levels of oxygen. The tumor growth and metastasis were evaluated. We also treated A549 lung cancer cells (A549 cells) with chronic hypoxia and then implanted the hypoxia-pretreated cancer cells into mice. The effect of exposure to hypoxia on metastasis of Lewis lung carcinoma in mice was also investigated.</p> <p>Results</p> <p>We found that long-term exposure to hypoxia a) significantly inhibited lung cancer tumor growth in xenograft and orthotopic models in rats, b) significantly reduced lymphatic metastasis of the lung cancer in rats and decreased lung metastasis of Lewis lung carcinoma in mice, c) reduced lung cancer cell proliferation and cell cycle progression <it>in vitro</it>, d) decreased growth of the tumors from hypoxia-pretreated A549 cells, e) decreased Na<sup>+</sup>-K<sup>+ </sup>ATPase Îą1 expression in hypoxic lung cancer tumors, and f) increased expression of hypoxia inducible factors (HIF1Îą and HIF2Îą) but decreased microvessel density in the lung cancer tumors. In contrast to lung cancer, the growth of tumor from HCT116 human colon cancer cells (colon cancer tumor) was a) significantly enhanced in the same hypoxia conditions, accompanied by b) no significant change in expression of Na<sup>+</sup>-K<sup>+ </sup>ATPase Îą1, c) increased HIF1Îą expression (no HIF2Îą was detected) and d) increased microvessel density in the tumor tissues.</p> <p>Conclusions</p> <p>This study demonstrated that long-term exposure to hypoxia repressed tumor progression of the lung cancer from A549 cells and that decreased expression of Na<sup>+</sup>-K<sup>+ </sup>ATPase was involved in hypoxic inhibition of tumor progression. The results from this study provide new insights into the role of hypoxia in tumor progression and therapeutic strategies for cancer treatment.</p
Visualizing size-dependent deformation mechanism transition in Sn
Displacive deformation via dislocation slip and deformation twinning usually plays a dominant role in the plasticity of crystalline solids at room temperature. Here we report in situ quantitative transmission electron microscope deformation tests of single crystal Sn samples. We found that when the sample size was reduced from 450â
nm down to 130â
nm, diffusional deformation replaces displacive plasticity as the dominant deformation mechanism at room temperature. At the same time, the strength-size relationship changed from âsmaller is strongerâ to âsmaller is much weakerâ. The effective surface diffusivity calculated based on our experimental data matches well with that reported in literature for boundary diffusion. The observed change in the deformation mode arises from the sample size-dependent competition between the Hall-Petch-like strengthening of displacive processes and Coble diffusion softening processes. Our findings have important implications for the stability and reliability of nanoscale devices such as metallic nanogaps.National Science Foundation (U.S.) (CMMI-0728069)National Science Foundation (U.S.) (DMR-1008104)National Science Foundation (U.S.) (DMR-1120901)United States. Air Force Office of Scientific Research (FA9550-08-1-0325
Photobacterium profundum under Pressure:A MS-Based Label-Free Quantitative Proteomics Study
Photobacterium profundum SS9 is a Gram-negative bacterium, originally collected from the Sulu Sea. Its genome consists of two chromosomes and a 80 kb plasmid. Although it can grow under a wide range of pressures, P. profundum grows optimally at 28 MPa and 15°C. Its ability to grow at atmospheric pressure allows for both easy genetic manipulation and culture, making it a model organism to study piezophily. Here, we report a shotgun proteomic analysis of P. profundum grown at atmospheric compared to high pressure using label-free quantitation and mass spectrometry analysis. We have identified differentially expressed proteins involved in high pressure adaptation, which have been previously reported using other methods. Proteins involved in key metabolic pathways were also identified as being differentially expressed. Proteins involved in the glycolysis/gluconeogenesis pathway were up-regulated at high pressure. Conversely, several proteins involved in the oxidative phosphorylation pathway were up-regulated at atmospheric pressure. Some of the proteins that were differentially identified are regulated directly in response to the physical impact of pressure. The expression of some proteins involved in nutrient transport or assimilation, are likely to be directly regulated by pressure. In a natural environment, different hydrostatic pressures represent distinct ecosystems with their own particular nutrient limitations and abundances. However, the only variable considered in this study was atmospheric pressure
Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between gossypium hirsutum and G. barbadense
<p>Abstract</p> <p>Background</p> <p>Cotton, with a large genome, is an important crop throughout the world. A high-density genetic linkage map is the prerequisite for cotton genetics and breeding. A genetic map based on simple polymerase chain reaction markers will be efficient for marker-assisted breeding in cotton, and markers from transcribed sequences have more chance to target genes related to traits. To construct a genome-wide, functional marker-based genetic linkage map in cotton, we isolated and mapped expressed sequence tag-simple sequence repeats (EST-SSRs) from cotton ESTs derived from the A<sub>1</sub>, D<sub>5</sub>, (AD)<sub>1</sub>, and (AD)<sub>2 </sub>genome.</p> <p>Results</p> <p>A total of 3177 new EST-SSRs developed in our laboratory and other newly released SSRs were used to enrich our interspecific BC<sub>1 </sub>genetic linkage map. A total of 547 loci and 911 loci were obtained from our EST-SSRs and the newly released SSRs, respectively. The 1458 loci together with our previously published data were used to construct an updated genetic linkage map. The final map included 2316 loci on the 26 cotton chromosomes, 4418.9 cM in total length and 1.91 cM in average distance between adjacent markers. To our knowledge, this map is one of the three most dense linkage maps in cotton. Twenty-one segregation distortion regions (SDRs) were found in this map; three segregation distorted chromosomes, Chr02, Chr16, and Chr18, were identified with 99.9% of distorted markers segregating toward the heterozygous allele. Functional analysis of SSR sequences showed that 1633 loci of this map (70.6%) were transcribed loci and 1332 loci (57.5%) were translated loci.</p> <p>Conclusions</p> <p>This map lays groundwork for further genetic analyses of important quantitative traits, marker-assisted selection, and genome organization architecture in cotton as well as for comparative genomics between cotton and other species. The segregation distorted chromosomes can be a guide to identify segregation distortion loci in cotton. The annotation of SSR sequences identified frequent and rare gene ontology items on each chromosome, which is helpful to discover functions of cotton chromosomes.</p
- âŚ