7,422 research outputs found

    A time series model of CDS sequences in complete genome

    Get PDF
    A time series model of CDS sequences in complete genome is proposed. A map of DNA sequence to integer sequence is given. The correlation dimensions and Hurst exponents of CDS sequences in complete genome of bacteria are calculated. Using the average of correlation dimensions, some interesting results are obtained.Comment: 11 pages with 4 figures and one table, Chaos, Solitons and Fractals (2000)(to appear

    One way to Characterize the compact structures of lattice protein model

    Get PDF
    On the study of protein folding, our understanding about the protein structures is limited. In this paper we find one way to characterize the compact structures of lattice protein model. A quantity called Partnum is given to each compact structure. The Partnum is compared with the concept Designability of protein structures emerged recently. It is shown that the highly designable structures have, on average, an atypical number of local degree of freedom. The statistical property of Partnum and its dependence on sequence length is also studied.Comment: 10 pages, 5 figure

    Explaining the DAMPE data with scalar dark matter and gauged U(1)Le−LμU(1)_{L_e-L_\mu} interaction

    Full text link
    Inspired by the peak structure observed by recent DAMPE experiment in e+e−e^+e^- cosmic-ray spectrum, we consider a scalar dark matter (DM) model with gauged U(1)Le−LμU(1)_{L_e-L_\mu} symmetry, which is the most economical anomaly-free theory to potentially explain the peak by DM annihilation in nearby subhalo. We utilize the process χχ→Z′Z′→llˉl′lˉ′\chi \chi \to Z^\prime Z^\prime \to l \bar{l} l^\prime \bar{l}^\prime, where χ\chi, Z′Z^\prime, l(′)l^{(\prime)} denote the scalar DM, the new gauge boson and l(′)=e,μl^{(\prime)} =e, \mu, respectively, to generate the e+e−e^+e^- spectrum. By fitting the predicted spectrum to the experimental data, we obtain the favored DM mass range mχ≃3060−100+80 GeVm_\chi \simeq 3060^{+80}_{-100} \, {\rm GeV} and Δm≡mχ−mZ′≲14 GeV\Delta m \equiv m_\chi - m_{Z^\prime} \lesssim 14 \, {\rm GeV} at 68%68\% Confidence Level (C.L.). Furthermore, we determine the parameter space of the model which can explain the peak and meanwhile satisfy the constraints from DM relic abundance, DM direct detection and the collider bounds. We conclude that the model we consider can account for the peak, although there exists a tension with the constraints from the LEP-II bound on mZ′m_{Z^\prime} arising from the cross section measurement of e+e−→Z′∗→e+e−e^+e^- \to Z^{\prime\ast} \to e^+ e^-.Comment: 15 pages, 4 figure
    • …
    corecore