3 research outputs found

    The need for intra aortic balloon pump support following open heart surgery: risk analysis and outcome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The early and intermediate outcome of patients requiring intraaortic balloon pump (IABP) was studied in a cohort of 2697 adult cardiac surgical patients.</p> <p>Methods</p> <p>136 patients requiring IABP (5.04%) support analysed over a 4 year period. Prospective data collection, obtained.</p> <p>Results</p> <p>The overall operative mortality was 35.3%. The "operation specific" mortality was higher on the Valve population.</p> <p>The mortality (%) as per time of balloon insertion was: Preoperative 18.2, Intraopeartive 33.3, postoperative 58.3 (p < 0.05).</p> <p>The incremental risk factors for death were: Female gender (Odds Ratio (OR) = 3.87 with Confidence Intervals (CI) = 1.3-11.6), Smoking (OR = 4.88, CI = 1.23- 19.37), Preoperative Creatinine>120 (OR = 3.3, CI = 1.14-9.7), Cross Clamp time>80 min (OR = 4.16, CI = 1.73-9.98) and IABP insertion postoperatively (OR = 19.19, CI = 3.16-116.47).</p> <p>The incremental risk factors for the development of complications were: Poor EF (OR = 3.16, CI = 0.87-11.52), Euroscore >7 (OR = 2.99, CI = 1.14-7.88), history of PVD (OR = 4.99, CI = 1.32-18.86).</p> <p>The 5 years survival was 79.2% for the CABG population and 71.5% for the valve group. (Hazard ratio = 1.78, CI = 0.92-3.46).</p> <p>Conclusions</p> <p>IABP represents a safe option of supporting the failing heart. The need for IABP especially in a high risk Valve population is associated with early unfavourable outcome, however the positive mid term results further justify its use.</p

    Visualization and 3D Reconstruction of Flame Cells of Taenia solium (Cestoda)

    Get PDF
    BACKGROUND: Flame cells are the terminal cells of protonephridial systems, which are part of the excretory systems of invertebrates. Although the knowledge of their biological role is incomplete, there is a consensus that these cells perform excretion/secretion activities. It has been suggested that the flame cells participate in the maintenance of the osmotic environment that the cestodes require to live inside their hosts. In live Platyhelminthes, by light microscopy, the cells appear beating their flames rapidly and, at the ultrastructural, the cells have a large body enclosing a tuft of cilia. Few studies have been performed to define the localization of the cytoskeletal proteins of these cells, and it is unclear how these proteins are involved in cell function. METHODOLOGY/PRINCIPAL FINDINGS: Parasites of two different developmental stages of T. solium were used: cysticerci recovered from naturally infected pigs and intestinal adults obtained from immunosuppressed and experimentally infected golden hamsters. Hamsters were fed viable cysticerci to recover adult parasites after one month of infection. In the present studies focusing on flame cells of cysticerci tissues was performed. Using several methods such as video, confocal and electron microscopy, in addition to computational analysis for reconstruction and modeling, we have provided a 3D visual rendition of the cytoskeletal architecture of Taenia solium flame cells. CONCLUSIONS/SIGNIFICANCE: We consider that visual representations of cells open a new way for understanding the role of these cells in the excretory systems of Platyhelminths. After reconstruction, the observation of high resolution 3D images allowed for virtual observation of the interior composition of cells. A combination of microscopic images, computational reconstructions and 3D modeling of cells appears to be useful for inferring the cellular dynamics of the flame cell cytoskeleton
    corecore