11 research outputs found
Emerging concepts in biomarker discovery; The US-Japan workshop on immunological molecular markers in oncology
Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations
Cancer Biomarker Discovery: The Entropic Hallmark
Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases