275 research outputs found
A PDEM-COM framework for uncertainty quantification of backward issues involving both aleatory and epistemic uncertainties
Abstract Uncertainties that exist in nature or due to lack of knowledge have been widely recognized by researchers and engineering practitioners throughout engineering design and analysis for decades. Though great efforts have been devoted to the issues of uncertainty quantification (UQ) in various aspects, the methodologies on the quantification of aleatory uncertainty and epistemic uncertainty are usually logically inconsistent. For instance, the aleatory uncertainty is usually quantified in the framework of probability theory, whereas the epistemic uncertainty is quantified mostly by non-probabilistic methods. In the present paper, a probabilistically consistent framework for the quantification of both aleatory and epistemic uncertainty by synthesizing the probability density evolution method (PDEM) and the change of probability measure (COM) is outlined. The framework is then applied to the backward issues of uncertainty quantification. In particular, the uncertainty model updating issue is discussed in this paper. A numerical example is presented, and the results indicate the flexibility and efficiency of the proposed PDEM-COM framework.</jats:p
Influence of Ketotifen, Cromolyn Sodium, and Compound 48/80 on the survival rates after intestinal ischemia reperfusion injury in rats
<p>Abstract</p> <p>Background</p> <p>Mast cells were associated with intestinal ischemia-reperfusion injury, the study was to observe the influence of Ketotifen, Cromolyn Sdium(CS), and Compound 48/80(CP) on the survival rates on the third day after intestinal ischemia-reperfusion injury in rats.</p> <p>Methods</p> <p>120 healthy Sprague-Dawley rats were randomly divided into 5 groups, Sham-operated group (group S), model group (group M), group K, group C and group CP. Intestinal damage was triggered by clamping the superior mesenteric artery for 75 minutes, group K, C, and CP were treated with kotifen 1 mg·kg<sup>-1</sup>, CS 50 mg·kg<sup>-1</sup>, and CP 0.75 mg·kg<sup>-1 </sup>i.v. at 5 min before reperfusion and once daily for three days following reperfusion respectively. Survival rate in each group was recorded during the three days after reperfusion. All the surviving rats were killed for determining the concentration of serum glutamic-oxaloacetic transaminase(AST), glutamic pyruvic transaminase(ALT), the ratio of AST compare ALT(S/L), total protein(TP), albumin(ALB), globulin(GLB), the ratio of ALB compare GLB(A/G), phosphocreatine kinase(CK), lactate dehydrogenase(LDH), urea nitrogen(BUN) and creatinine(CRE) at the 3<sup>rd </sup>day after reperfusion. And ultrastructure of IMMC, Chiu's score, lung histology, IMMC counts, the levels of TNF-α, IL-1β, IL-6 and IL-10 of the small intestine were detected at the same time.</p> <p>Results</p> <p>Intestinal ischemia-reperfusion injury reduced the survival rate. The concentrations of TP, ALB and level of IL-10 in intestine in group M decreased significantly while the concentrations of S/L, LDH and the levels of IL-6 and TNF-α in intestine increased significantly compared with group S (<it>P </it>< 0.05). Treatment with Ketotifen and CS increased the survival rate compared with group M (<it>P </it>< 0.05), attenuated the down-regulation or up-regulation of the above index (<it>P </it>< 0.05). Treatment with CP decreased the survival rate on the 3<sup>rd </sup>day after reperfusion compared with group M(<it>P </it>< 0.05). Group K and C had better morphology in IMMC in the small intestine and in the lungs than in group M and CP, although the Chiu's score and IMMC counts remained the same in the five groups(<it>P </it>> 0.05).</p> <p>Conclusion</p> <p>Mast cell inhibition after ischemia prior to reperfusion and following reperfusion may decrease the multi-organ injury induced by intestine ischemia reperfusion, and increase the survival rates.</p
The generalized Hamiltonian model for the shafting transient analysis of the hydro turbine generating sets.
yesTraditional rotor dynamics mainly focuses on the steady- state behavior of the rotor and shafting. However, for systems such as hydro turbine generating sets (HTGS) where the control and regulation is frequently applied, the shafting safety and stabilization in transient state is then a key factor. The shafting transient state inevitably involves multiparameter domain, multifield coupling, and coupling dynamics. In this paper, the relative value form of the Lagrange function and its equations have been established by defining the base value system of the shafting. Takingthe rotation angle and the angular speed of the shafting as a link, the shafting lateral vibration and generator equations are integrated into the framework of generalized
Hamiltonian system. The generalized Hamiltonian control model is thus established. To make the model more general, additional forces of the shafting are taken as the input excitation in proposed model. The control system of the HTGS can be easily connected with the shafting model to form the whole simulation system of the HTGS. It is expected that this study will
build a foundation for the coupling dynamics theory using the generalized Hamiltonian theory to investigate coupling dynamic mechanism among the shafting vibration, transient of hydro turbine generating sets, and additional forces of the shafting.National Natural Science Foundation of China under Grant Nos. 51179079 and 5083900
Selective Synthesis of Fe2O3 and Fe3O4 Nanowires Via a Single Precursor: A General Method for Metal Oxide Nanowires
Hematite (α-Fe2O3) and magnetite (Fe3O4) nanowires with the diameter of about 100 nm and the length of tens of micrometers have been selectively synthesized by a microemulsion-based method in combination of the calcinations under different atmosphere. The effects of the precursors, annealing temperature, and atmosphere on the morphology and the structure of the products have been investigated. Moreover, Co3O4 nanowires have been fabricated to confirm the versatility of the method for metal oxide nanowires
Desmoglein 3, via an Interaction with E-cadherin, Is Associated with Activation of Src
Desmoglein 3 (Dsg3), a desmosomal adhesion protein, is expressed in basal and immediate suprabasal layers of skin and across the entire stratified squamous epithelium of oral mucosa. However, increasing evidence suggests that the role of Dsg3 may involve more than just cell-cell adhesion.To determine possible additional roles of Dsg3 during epithelial cell adhesion we used overexpression of full-length human Dsg3 cDNA, and RNAi-mediated knockdown of this molecule in various epithelial cell types. Overexpression of Dsg3 resulted in a reduced level of E-cadherin but a colocalisation with the E-cadherin-catenin complex of the adherens junctions. Concomitantly these transfected cells exhibited marked migratory capacity and the formation of filopodial protrusions. These latter events are consistent with Src activation and, indeed, Src-specific inhibition reversed these phenotypes. Moreover Dsg3 knockdown, which also reversed the decreased level of E-cadherin, partially blocked Src phosphorylation.Our data are consistent with the possibility that Dsg3, as an up-stream regulator of Src activity, helps regulate adherens junction formation
Duckweed (Lemna minor) as a Model Plant System for the Study of Human Microbial Pathogenesis
BACKGROUND: Plant infection models provide certain advantages over animal models in the study of pathogenesis. However, current plant models face some limitations, e.g., plant and pathogen cannot co-culture in a contained environment. Development of such a plant model is needed to better illustrate host-pathogen interactions. METHODOLOGY/PRINCIPAL FINDINGS: We describe a novel model plant system for the study of human pathogenic bacterial infection on a large scale. This system was initiated by co-cultivation of axenic duckweed (Lemna minor) plants with pathogenic bacteria in 24-well polystyrene cell culture plate. Pathogenesis of bacteria to duckweed was demonstrated with Pseudomonas aeruginosa and Staphylococcus aureus as two model pathogens. P. aeruginosa PAO1 caused severe detriment to duckweed as judged from inhibition to frond multiplication and chlorophyll formation. Using a GFP-marked PAO1 strain, we demonstrated that bacteria colonized on both fronds and roots and formed biofilms. Virulence of PAO1 to duckweed was attenuated in its quorum sensing (QS) mutants and in recombinant strains overexpressing the QS quenching enzymes. RN4220, a virulent strain of S. aureus, caused severe toxicity to duckweed while an avirulent strain showed little effect. Using this system for antimicrobial chemical selection, green tea polyphenols exhibited inhibitory activity against S. aureus virulence. This system was further confirmed to be effective as a pathogenesis model using a number of pathogenic bacterial species. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that duckweed can be used as a fast, inexpensive and reproducible model plant system for the study of host-pathogen interactions, could serve as an alternative choice for the study of some virulence factors, and could also potentially be used in large-scale screening for the discovery of antimicrobial chemicals
Network Properties of Robust Immunity in Plants
Two modes of plant immunity against biotrophic pathogens, Effector Triggered Immunity (ETI) and Pattern-Triggered Immunity (PTI), are triggered by recognition of pathogen effectors and Microbe-Associated Molecular Patterns (MAMPs), respectively. Although the jasmonic acid (JA)/ethylene (ET) and salicylic acid (SA) signaling sectors are generally antagonistic and important for immunity against necrotrophic and biotrophic pathogens, respectively, their precise roles and interactions in ETI and PTI have not been clear. We constructed an Arabidopsis dde2/ein2/pad4/sid2-quadruple mutant. DDE2, EIN2, and SID2 are essential components of the JA, ET, and SA sectors, respectively. The pad4 mutation affects the SA sector and a poorly characterized sector. Although the ETI triggered by the bacterial effector AvrRpt2 (AvrRpt2-ETI) and the PTI triggered by the bacterial MAMP flg22 (flg22-PTI) were largely intact in plants with mutations in any one of these genes, they were mostly abolished in the quadruple mutant. For the purposes of this study, AvrRpt2-ETI and flg22-PTI were measured as relative growth of Pseudomonas syringae bacteria within leaves. Immunity to the necrotrophic fungal pathogen Alternaria brassicicola was also severely compromised in the quadruple mutant. Quantitative measurements of the immunity levels in all combinatorial mutants and wild type allowed us to estimate the effects of the wild-type genes and their interactions on the immunity by fitting a mixed general linear model. This signaling allocation analysis showed that, contrary to current ideas, each of the JA, ET, and SA signaling sectors can positively contribute to immunity against both biotrophic and necrotrophic pathogens. The analysis also revealed that while flg22-PTI and AvrRpt2-ETI use a highly overlapping signaling network, the way they use the common network is very different: synergistic relationships among the signaling sectors are evident in PTI, which may amplify the signal; compensatory relationships among the sectors dominate in ETI, explaining the robustness of ETI against genetic and pathogenic perturbations
A Downstream CpG Island Controls Transcript Initiation and Elongation and the Methylation State of the Imprinted Airn Macro ncRNA Promoter
A CpG island (CGI) lies at the 5′ end of the Airn macro non-protein-coding (nc) RNA that represses the flanking Igf2r promoter in cis on paternally inherited chromosomes. In addition to being modified on maternally inherited chromosomes by a DNA methylation imprint, the Airn CGI shows two unusual organization features: its position immediately downstream of the Airn promoter and transcription start site and a series of tandem direct repeats (TDRs) occupying its second half. The physical separation of the Airn promoter from the CGI provides a model to investigate if the CGI plays distinct transcriptional and epigenetic roles. We used homologous recombination to generate embryonic stem cells carrying deletions at the endogenous locus of the entire CGI or just the TDRs. The deleted Airn alleles were analyzed by using an ES cell imprinting model that recapitulates the onset of Igf2r imprinted expression in embryonic development or by using knock-out mice. The results show that the CGI is required for efficient Airn initiation and to maintain the unmethylated state of the Airn promoter, which are both necessary for Igf2r repression on the paternal chromosome. The TDRs occupying the second half of the CGI play a minor role in Airn transcriptional elongation or processivity, but are essential for methylation on the maternal Airn promoter that is necessary for Igf2r to be expressed from this chromosome. Together the data indicate the existence of a class of regulatory CGIs in the mammalian genome that act downstream of the promoter and transcription start
Effects of anthropogenic activities on the heavy metal levels in the clams and sediments in a tropical river
The present study aimed to assess the effects of anthropogenic activities on the heavy metal levels in the Langat River by transplantation of Corbicula javanica. In addition, potential ecological risk indexes (PERI) of heavy metals in the surface sediments of the river were also investigated. The correlation analysis revealed that eight metals (As, Co, Cr, Fe, Mn, Ni, Pb and Zn) in total soft tissue (TST) while five metals (As, Cd, Cr, Fe and Mn) in shell have positively and significantly correlation with respective metal concentration in sediment, indicating the clams is a good biomonitor of the metal levels. Based on clustering patterns, the discharge of dam impoundment, agricultural activities and urban domestic waste were identified as three major contributors of the metals in Pangsun, Semenyih and Dusun Tua, and Kajang, respectively. Various geochemical indexes for a single metal pollutant (geoaccumulation index (I geo), enrichment factors (EF), contamination factor (C f) and ecological risk (Er)) all agreed that Cd, Co, Cr, Cu, Fe, Mn, Ni and Zn are not likely to cause adverse effect to the river ecosystem, but As and Pb could pose a potential ecological risk to the river ecosystem. All indexes (degree of contamination (C d), combined pollution index (CPI) and PERI) showed that overall metal concentrations in the tropical river are still within safe limit. River metal pollution was investigated. Anthropogenic activities were contributors of the metal pollution. Geochemical indexes showed that metals are within the safe limit
- …