11 research outputs found

    Influence of Ketotifen, Cromolyn Sodium, and Compound 48/80 on the survival rates after intestinal ischemia reperfusion injury in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mast cells were associated with intestinal ischemia-reperfusion injury, the study was to observe the influence of Ketotifen, Cromolyn Sdium(CS), and Compound 48/80(CP) on the survival rates on the third day after intestinal ischemia-reperfusion injury in rats.</p> <p>Methods</p> <p>120 healthy Sprague-Dawley rats were randomly divided into 5 groups, Sham-operated group (group S), model group (group M), group K, group C and group CP. Intestinal damage was triggered by clamping the superior mesenteric artery for 75 minutes, group K, C, and CP were treated with kotifen 1 mg·kg<sup>-1</sup>, CS 50 mg·kg<sup>-1</sup>, and CP 0.75 mg·kg<sup>-1 </sup>i.v. at 5 min before reperfusion and once daily for three days following reperfusion respectively. Survival rate in each group was recorded during the three days after reperfusion. All the surviving rats were killed for determining the concentration of serum glutamic-oxaloacetic transaminase(AST), glutamic pyruvic transaminase(ALT), the ratio of AST compare ALT(S/L), total protein(TP), albumin(ALB), globulin(GLB), the ratio of ALB compare GLB(A/G), phosphocreatine kinase(CK), lactate dehydrogenase(LDH), urea nitrogen(BUN) and creatinine(CRE) at the 3<sup>rd </sup>day after reperfusion. And ultrastructure of IMMC, Chiu's score, lung histology, IMMC counts, the levels of TNF-α, IL-1β, IL-6 and IL-10 of the small intestine were detected at the same time.</p> <p>Results</p> <p>Intestinal ischemia-reperfusion injury reduced the survival rate. The concentrations of TP, ALB and level of IL-10 in intestine in group M decreased significantly while the concentrations of S/L, LDH and the levels of IL-6 and TNF-α in intestine increased significantly compared with group S (<it>P </it>< 0.05). Treatment with Ketotifen and CS increased the survival rate compared with group M (<it>P </it>< 0.05), attenuated the down-regulation or up-regulation of the above index (<it>P </it>< 0.05). Treatment with CP decreased the survival rate on the 3<sup>rd </sup>day after reperfusion compared with group M(<it>P </it>< 0.05). Group K and C had better morphology in IMMC in the small intestine and in the lungs than in group M and CP, although the Chiu's score and IMMC counts remained the same in the five groups(<it>P </it>> 0.05).</p> <p>Conclusion</p> <p>Mast cell inhibition after ischemia prior to reperfusion and following reperfusion may decrease the multi-organ injury induced by intestine ischemia reperfusion, and increase the survival rates.</p

    Circulating FGF21 Levels Are Progressively Increased from the Early to End Stages of Chronic Kidney Diseases and Are Associated with Renal Function in Chinese

    Get PDF
    Fibroblast growth factor 21 (FGF21) is a hepatic hormone involved in the regulation of lipid and carbohydrate metabolism. This study aims to test the hypothesis that elevated FGF21 concentrations are associated with the change of renal function and the presence of left ventricular hypertrophy (LVH) in the different stages of chronic kidney disease (CKD) progression.0.05).Plasma FGF21 levels are significantly increased with the development of early- to end-stage CKD and are independently associated with renal function and adverse lipid profiles in Chinese population. Understanding whether increased FGF21 is associated with myocardial hypertrophy in CKD requires further study

    Protection from ultraviolet damage and photocarcinogenesis by vitamin d compounds

    Get PDF
    © Springer Nature Switzerland AG 2020. Exposure of skin cells to UV radiation results in DNA damage, which if inadequately repaired, may cause mutations. UV-induced DNA damage and reactive oxygen and nitrogen species also cause local and systemic suppression of the adaptive immune system. Together, these changes underpin the development of skin tumours. The hormone derived from vitamin D, calcitriol (1,25-dihydroxyvitamin D3) and other related compounds, working via the vitamin D receptor and at least in part through endoplasmic reticulum protein 57 (ERp57), reduce cyclobutane pyrimidine dimers and oxidative DNA damage in keratinocytes and other skin cell types after UV. Calcitriol and related compounds enhance DNA repair in keratinocytes, in part through decreased reactive oxygen species, increased p53 expression and/or activation, increased repair proteins and increased energy availability in the cell when calcitriol is present after UV exposure. There is mitochondrial damage in keratinocytes after UV. In the presence of calcitriol, but not vehicle, glycolysis is increased after UV, along with increased energy-conserving autophagy and changes consistent with enhanced mitophagy. Reduced DNA damage and reduced ROS/RNS should help reduce UV-induced immune suppression. Reduced UV immune suppression is observed after topical treatment with calcitriol and related compounds in hairless mice. These protective effects of calcitriol and related compounds presumably contribute to the observed reduction in skin tumour formation in mice after chronic exposure to UV followed by topical post-irradiation treatment with calcitriol and some, though not all, related compounds

    Identification of key genes and pathways associated with neuropathic pain in uninjured dorsal root ganglion by using bioinformatic analysis

    No full text
    Chao-Jin Chen,*&nbsp;De-Zhao Liu,*&nbsp;Wei-Feng Yao,&nbsp;Yu Gu,&nbsp;Fei Huang,&nbsp;Zi-Qing Hei,&nbsp;Xiang Li Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People&rsquo;s Republic of China *These authors contributed equally to this work Purpose: Neuropathic pain is a complex chronic condition occurring post-nervous system damage. The transcriptional reprogramming of injured dorsal root ganglia (DRGs) drives neuropathic pain. However, few comparative analyses using high-throughput platforms have investigated uninjured DRG in neuropathic pain, and potential interactions among differentially expressed genes (DEGs) and pathways were not taken into consideration. The aim of this study was to identify changes in genes and pathways associated with neuropathic pain in uninjured L4 DRG after L5 spinal nerve ligation (SNL) by using bioinformatic analysis.Materials and methods: The microarray profile GSE24982 was downloaded from the Gene Expression Omnibus database to identify DEGs between DRGs in SNL and sham rats. The prioritization for these DEGs was performed using the Toppgene database followed by gene ontology and pathway enrichment analyses. The relationships among DEGs from the protein interactive perspective were analyzed using protein&ndash;protein interaction (PPI) network and module analysis. Real-time polymerase chain reaction (PCR) and Western blotting were used to confirm the expression of DEGs in the rodent neuropathic pain model.Results: A total of 206 DEGs that might play a role in neuropathic pain were identified in L4 DRG, of which 75 were upregulated and 131 were downregulated. The upregulated DEGs were enriched in biological processes related to transcription regulation and molecular functions such as DNA binding, cell cycle, and the FoxO signaling pathway. Ctnnb1 protein had the highest connectivity degrees in the PPI network. The in vivo studies also validated that mRNA and protein levels of Ctnnb1 were upregulated in both L4 and L5 DRGs.Conclusion: This study provides insight into the functional gene sets and pathways associated with neuropathic pain in L4 uninjured DRG after L5 SNL, which might promote our understanding of the molecular mechanisms underlying the development of neuropathic pain. Keywords: spinal nerve ligation, neuropathic pain, uninjured afferent, bioinformatic analysis, microarra

    In vivo study of doxorubicin-loaded cell-penetrating peptide-modified pH-sensitive liposomes: biocompatibility, bio-distribution, and pharmacodynamics in BALB/c nude mice bearing human breast tumors

    No full text
    Yuan Ding,1,* Wei Cui,2,* Dan Sun,1 Gui-Ling Wang,1 Yu Hei,1 Shuai Meng,1 Jian-Hua Chen,3 Ying Xie,1 Zhi-Qiang Wang4 1Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, 2School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 3School of Medicine, Jianghan University, Wuhan, People&rsquo;s Republic of China; 4Department of Chemistry and Biochemistry, Kent State University Geauga, Burton, OH, USA *These authors contributed equally to this work Abstract: In vivo evaluation of drug delivery vectors is essential for clinical translation. In BALB/c nude mice bearing human breast cancer tumors, we investigated the biocompatibility, pharmacokinetics, and pharmacodynamics of doxorubicin (DOX)-loaded novel cell-penetrating peptide (CPP)-modified pH-sensitive liposomes (CPPL) (referred to as CPPL(DOX)) with an optimal CPP density of 4%. In CPPL, a polyethylene glycol (PEG) derivative formed by conjugating PEG with stearate via acid-degradable hydrazone bond (PEG2000-Hz-stearate) was inserted into the surface of liposomes, and CPP was directly attached to liposome surfaces via coupling with stearate to simultaneously achieve long circulation time in blood and improve the selectivity and efficacy of CPP for tumor targeting. Compared to PEGylated liposomes, CPPL enhanced DOX accumulation in tumors up to 1.9-fold (p&lt;0.01) and resulted in more cell apoptosis as a result of DNA disruption as well as a relatively lower tumor growth ratio (T/C%). Histological examination did not show any signs of necrosis or inflammation in normal tissues, but large cell dissolving areas were found in tumors following the treatment of animals with CPPL(DOX). Our findings provide important and detailed information regarding the distribution of CPPL(DOX) in vivo and reveal their abilities of tumor penetration and potential for the treatment of breast cancer. Keywords: tumor targeting, TUNEL stain, hemolysis, therapy for breast cancer, pharmaco&shy;kinetic

    Neoplastic Transformation of Human Small Airway Epithelial Cells Induced by Arsenic

    No full text
    Human small airway epithelial cells (SAECs) previously immortalized with human telomerase reverse transcriptase (h-TERT) were continuously treated with sodium arsenite at a dose of 0.5 μg/mL in culture for up to 6 months. Arsenic-treated cells progressively displayed an increase in transformed phenotype including enhanced growth saturation density, plating efficiency, and anchorage-independent growth and invasion capability compared with their nontreated control cells. To determine whether arsenic-induced cell transformation was associated with genomic instability, treated and control cells were also analyzed for micronuclei formation. A 4.8-fold increase in micronuclei incidence in arsenic-treated cells was detected in conjunction with increased N-phosphonacetyl-l-aspartate (PALA)-resistant characteristics. In addition, arsenic-treated cells showed an increase in c-H-ras, c-myc, and c-fos protein expression relative to controls. The change in oncoprotein expression correlated with a decrease in wild-type p53 expression and hyperphosphorylated retinoblastoma. Taken together, these results strongly suggest that h-TERT immortalized human small airway epithelial cells underwent step-wise transformation after inorganic arsenic treatment
    corecore