31,161 research outputs found
Constraining the bulk Lorentz factor from the photosphere emission
We propose a direct and model-independent method to constrain the Lorentz
factor of a relativistically expanding object, like gamma-ray bursts. Only the
measurements, such as thermal component of the emission, the distance and the
variable time scale of the light curve, are used. If the uncertainties are
considered, we will obtain lower limits of the Lorentz factor instead. We apply
this method to GRB 090618 and get a lower limit of the Lorentz factor to be 22.
The method can be used to any relativistically moving object, such as gamma-ray
bursts, blazars, and soft gamma-ray repeaters, providing the thermal component
of the emission being observed.Comment: 10 pages, 1 figur
Improving the Dielectric Properties of Polymers by Incorporating Nano-particles.
The paper presents a brief review of the promise of nanotechnology applied to polymeric insulation materials and discusses the electrical properties found. For a variety of nanocomposites, the dielectric behaviour has shown that the interface between the embedded particles and host matrix holds the key to the understanding of the bulk phenomena being observed. Dielectric spectroscopy verified the motion of carriers through the interaction zones that surround the particles. The obvious improvements in endurance and breakdown strength of nanocomposites may be due to a reduction of charge accumulation. PEA space charge tests confirm this charge dissipation. By examining the onset field of space charge accumulation, it may be possible to determine whether a system is likely to be useful
- …