102 research outputs found
Fractional maximal and integral operators in variable exponent Morrey spaces
In this paper, we study the boundedness of the fractional maximal operator and fractional integral operator on the variable exponent Morrey spaces defined over spaces of homogeneous type
Transient receptor potential channel 1 deficiency impairs host defense and proinflammatory responses to bacterial infection by regulating protein kinase Cα signaling
Transient receptor potential channel 1 (TRPC1) is a nonselective cation channel that is required for Ca2+ homeostasis necessary for cellular functions. However, whether TRPC1 is involved in infectious disease remains unknown. Here, we report a novel function for TRPC1 in host defense against Gram-negative bacteria. TRPC1-/- mice exhibited decreased survival, severe lung injury, and systemic bacterial dissemination upon infection. Furthermore, silencing of TRPC1 showed decreased Ca2+ entry, reduced proinflammatory cytokines, and lowered bacterial clearance. Importantly, TRPC1 functioned as an endogenous Ca2+ entry channel critical for proinflammatory cytokine production in both alveolar macrophages and epithelial cells. We further identified that bacterium-mediated activation of TRPC1 was dependent on Toll-like receptor 4 (TLR4), which induced endoplasmic reticulum (ER) store depletion. After activation of phospholipase Cγ (PLC-γ), TRPC1 mediated Ca2+ entry and triggered protein kinase Cα (PKC-α) activity to facilitate nuclear translocation of NF-kB/Jun N-terminal protein kinase (JNK) and augment the proinflammatory response, leading to tissue damage and eventually mortality. These findings reveal that TRPC1 is required for host defense against bacterial infections through the TLR4-TRPC1-PKCγ signaling circuit.Fil: Zhou, Xikun. University Of North Dakota; Estados Unidos. West China Hospital Of Sichuan University; ChinaFil: Ye, Yan. University Of North Dakota; Estados UnidosFil: Sun, Yuyang. University Of North Dakota; Estados UnidosFil: Li, Xuefeng. West China Hospital Of Sichuan University; China. University Of North Dakota; Estados UnidosFil: Wang, Wenxue. University Of North Dakota; Estados UnidosFil: Privratsky, Breanna. University Of North Dakota; Estados UnidosFil: Tan, Shirui. University Of North Dakota; Estados UnidosFil: Zhou, Zongguang. West China Hospital Of Sichuan University; ChinaFil: Huang, Canhua. West China Hospital Of Sichuan University; ChinaFil: Wei, Yu-Quan. West China Hospital Of Sichuan University; ChinaFil: Birnbaumer, Lutz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. National Institute Of Environmental Health Sciences; Estados UnidosFil: Singh, Brij B.. University Of North Dakota; Estados UnidosFil: Wu, Min. University Of North Dakota; Estados Unido
Hemophagocytic lymphohistiocytosis and disseminated intravascular coagulation are underestimated, but fatal adverse events in chimeric antigen receptor T-cell therapy
Hematotoxicity is the most common long-term adverse event (AE) after chimeric antigen receptor T-cell (CAR T) therapy. However, patients who receive CAR T therapy in pivotal clinical trials are subjected to restrictive selection criteria, and this means that rare but fatal toxicities are underestimated. Here, we systematically analyzed CAR T-associated hematologic AE using the US Food and Drug Administration Adverse Event Reporting System (FAERS) between January 2017 and December 2021. Disproportionality analyses were performed using reporting odds ratios (ROR) and information component (IC); the lower limit of the ROR and IC 95% confidence interval (CI) (ROR025 and IC025) exceeding one and zero was considered significant, respectively. Among the 105,087,611 reports in FAERS, 5,112 CAR T-related hematotoxicity reports were identified. We found 23 significant over-reporting hematologic AE (ROR025 >1) compared to the full database, of which hemophagocytic lymphohistiocytosis (HLH; n=136 [2.7%], ROR025 = 21.06), coagulopathy (n=128 [2.5%], ROR025 = 10.43), bone marrow failure (n=112 [2.2%], ROR025 = 4.88), disseminated intravascular coagulation (DIC; n=99 [1.9%], ROR025 = 9.64), and B-cell aplasia (n=98 [1.9%], ROR025 = 118.16, all IC025 > 0) were highly under-reported AE in clinical trials. Importantly, HLH and DIC led to mortality rates of 69.9% and 59.6%, respectively. Lastly, hematotoxicity-related mortality was 41.43%, and 22 death-related hematologic AE were identified using LASSO regression analysis. These findings could help clinicians in the early detection of those rarely reported but lethal hematologic AE, thus reducing the risk of severe toxicities for CAR T recipients
Source to sink: Evolution of lignin composition in the Madre de Dios River system with connection to the Amazon basin and offshore:Lignin evolution in Amazon
While lignin geochemistry has been extensively investigated in the Amazon River, little is known about lignin distribution and dynamics within deep, stratified river channels or its transformations within soils prior to delivery to rivers. We characterized lignin phenols in soils, river particulate organic matter (POM), and dissolved organic matter (DOM) across a 4 km elevation gradient in the Madre de Dios River system, Peru, as well as in marine sediments to investigate the source-to-sink evolution of lignin. In soils, we found more oxidized lignin in organic horizons relative to mineral horizons. The oxidized lignin signature was maintained during transfer into rivers, and lignin was a relatively constant fraction of bulk organic carbon in soils and riverine POM. Lignin in DOM became increasingly oxidized downstream, indicating active transformation of dissolved lignin during transport, especially in the dry season. In contrast, POM accumulated undegraded lignin downstream during the wet season, suggesting that terrestrial input exceeded in-river degradation. We discovered high concentrations of relatively undegraded lignin in POM at depth in the lower Madre de Dios River in both seasons, revealing a woody undercurrent for its transfer within these deep rivers. Our study of lignin evolution in the soil-river-ocean continuum highlights important seasonal and depth variations of river carbon components and their connection to soil carbon pools, providing new insights into fluvial carbon dynamics associated with the transfer of lignin biomarkers from source to sink
Source to sink: Evolution of lignin composition in the Madre de Dios River system with connection to the Amazon basin and offshore
While lignin geochemistry has been extensively investigated in the Amazon River, little is known about lignin distribution and dynamics within deep, stratified river channels or its transformations within soils prior to delivery to rivers. We characterized lignin phenols in soils, river particulate organic matter (POM), and dissolved organic matter (DOM) across a 4 km elevation gradient in the Madre de Dios River system, Peru, as well as in marine sediments to investigate the source-to-sink evolution of lignin. In soils, we found more oxidized lignin in organic horizons relative to mineral horizons. The oxidized lignin signature was maintained during transfer into rivers, and lignin was a relatively constant fraction of bulk organic carbon in soils and riverine POM. Lignin in DOM became increasingly oxidized downstream, indicating active transformation of dissolved lignin during transport, especially in the dry season. In contrast, POM accumulated undegraded lignin downstream during the wet season, suggesting that terrestrial input exceeded in-river degradation. We discovered high concentrations of relatively undegraded lignin in POM at depth in the lower Madre de Dios River in both seasons, revealing a woody undercurrent for its transfer within these deep rivers. Our study of lignin evolution in the soil-river-ocean continuum highlights important seasonal and depth variations of river carbon components and their connection to soil carbon pools, providing new insights into fluvial carbon dynamics associated with the transfer of lignin biomarkers from source to sink
- …