25 research outputs found
Lactic acid fermentation as a tool to enhance the antioxidant properties of Myrtus communis berries
Background: Myrtle (Myrtus communis L.) is a medicinal and aromatic plant belonging to Myrtaceae family, which
is largely diffused in the Mediterranean areas and mainly cultivated in Tunisia and Italy. To the best of our knowledge, no
studies have already considered the use of the lactic acid fermentation to enhance the functional features of M.
communis. This study aimed at using a selected lactic acid bacterium for increasing the antioxidant features of myrtle
berries, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation.
The antioxidant activity was preliminarily evaluated through in vitro assays, further confirmed through ex vivo analysis on
murine fibroblasts, and the profile of phenol compounds was characterized.
Results: Myrtle berries homogenate, containing yeast extract (0.4%, wt/vol), was fermented with Lactobacillus plantarum
C2, previously selected from plant matrix. Chemically acidified homogenate, without bacterial inoculum and incubated
under the same conditions, was used as the control. Compared to the control, fermented myrtle homogenate exhibited
a marked antioxidant activity in vitro. The radical scavenging activity towards DPPH increased by 30%, and the
inhibition of linoleic acid peroxidation was twice. The increased antioxidant activity was confirmed using Balb 3 T3
mouse fibroblasts, after inducing oxidative stress, and determining cell viability and radical scavenging activity
through MTT and DCFH-DA assays, respectively. The lactic acid fermentation allowed increased concentrations of total
phenols, flavonoids and anthocyanins, which were 5–10 times higher than those found for the non-fermented and
chemically acidified control. As shown by HPLC analysis, the main increases were found for gallic and ellagic acids, and
flavonols (myricetin and quercetin). The release of these antioxidant compounds would be strictly related to the
esterase activities of L. plantarum.
Conclusions: The lactic acid fermentation of myrtle berries is a suitable tool for novel applications as functional
food dietary supplements or pharmaceutical preparations
Assessing global patterns in mammalian carnivore occupancy and richness by integrating local camera trap surveys
Aim Biodiversity loss is a major driver of ecosystem change, yet the ecological data required to detect and mitigate losses are often lacking. Recently, camera trap surveys have been suggested as a method for sampling local wildlife communities, because these observations can be collated into a global monitoring network. To demonstrate the potential of camera traps for global monitoring, we assembled data from multiple local camera trap surveys to evaluate the interchange between fine- and broad-scale processes impacting mammalian carnivore communities. Location Argentina, Belize, Botswana, Canada, Indonesia, Iran, Madagascar, Nepal, Norway, Senegal, South Africa, and the U.S.A. Methods We gathered camera trap data, totalling > 100,000 trap nights, from across five continents. To analyse local and species-specific responses to anthropogenic and environmental variables, we fitted multispecies occurrence models to each study area. To analyse global-level responses, we then fitted a multispecies, multi-area occurrence model. Results We recorded 4,805 detections of 96 mammalian carnivore species photographed across 1,714 camera stations located in 12 countries. At the global level, our models revealed that carnivore richness and occupancy within study areas was positively associated with prey availability. Occupancy within study areas also tended to increase with greater protection and greater distances to roads. The strength of these relationships, however, differed among countries. Main conclusions We developed a research framework for leveraging global camera trap data to evaluate patterns of mammalian carnivore occurrence and richness across multiple spatial scales. Our research highlights the importance of intact prey populations and protected areas in conserving carnivore communities. Our research also highlights the potential of camera traps for monitoring wildlife communities and provides a case study for how this can be achieved on a global scale. We encourage greater integration and standardization among camera trap studies worldwide, which would help inform effective conservation planning for wildlife populations both locally and globally
Phylogeography of western Pacific Leucetta 'chagosensis' (Porifera: Calcarea) from ribosomal DNA sequences: implications for population history and conservation of the Great Barrier Reef World Heritage Area (Australia)
Leucetta ‘chagosensis’ is a widespread calcareous sponge, occurring in shaded habitats of Indo-Pacific coral reefs. In this study we explore relationships among 19 ribosomal DNA sequence types (the ITS1-5.8S–ITS2 region plus flanking gene sequences) found among 54 individuals from 28 locations throughout the western Pacific, with focus on the Great Barrier Reef (GBR). Maximum parsimony analysis revealed phylogeographical structuring into four major clades (although not highly supported by bootstrap analysis) corresponding to the northern/central GBR with Guam and Taiwan, the southern GBR and subtropical regions south to Brisbane, Vanuatu and Indonesia. Subsequent nested clade analysis (NCA) confirmed this structure with a probability of > 95%. After NCA of geographical distances, a pattern of range expansion from the internal Indonesian clade was inferred at the total cladogram level, as the Indonesian clade was found to be the internal and therefore oldest clade. Two distinct clades were found on the GBR, which narrowly overlap geographically in a line approximately from the Whitsunday Islands to the northern Swain Reefs. At various clade levels, NCA inferred that the northern GBR clade was influenced by past fragmentation and contiguous range expansion events, presumably during/after sea level low stands in the Pleistocene, after which the northern GBR might have been recolonized from the Queensland Plateau in the Coral Sea. The southern GBR clade is most closely related to subtropical L. ‘chagosensis’, and we infer that the southern GBR probably was recolonized from there after sea level low stands, based on our NCA results and supported by oceanographic data. Our results have important implications for conservation and management of the GBR, as they highlight the importance of marginal transition zones in the generation and maintenance of species rich zones, such as the Great Barrier Reef World Heritage Area