1,932 research outputs found

    Engineering Escherichia coli for co-production of acetaldehyde and hydrogen from glucose

    Get PDF
    Biomass is widely accepted as a good alternative to petroleum due to concerns about global warming and energy security. Microbial conversion of renewable resources into fuel molecules and important chemicals has been achieved through efforts in genetic engineering of the biocatalysts. In this work, we demonstrated efficient production of an important bulk chemical in glucose fermentation by recombinant Escherichia coli strains. Escherichia coli K12 strain MG1655 was engineered to co-produce acetaldehyde and hydrogen during glucose fermentation using an exogenous acetyl-CoA reductase (for the conversion of acetyl-CoA to acetaldehyde) and the native formate hydrogen lyase. A putative acetaldehyde dehydrogenase/acetyl-CoA reductase from Salmonella enterica (SeEutE) was cloned, produced at high levels and purified by nickel affinity chromatography. In vitro assays showed that this enzyme had both acetaldehyde dehydrogenase activity (68.07 y 1.63 ymol min-1 mg-1) and the desired acetyl-CoA reductase activity (49.23 y 2.88 ymol min-1 mg-1). The eutE gene was engineered into an E. coli mutant lacking native glucose fermentation pathways (ΔadhE, ΔackA-pta, ΔldhA, ΔfrdC). The engineered strain (ZH88) produced of 4.91 y 0.29 mM acetaldehyde while consuming 11.05 mM glucose, but also produced 6.44 y 0.26 mM ethanol. Studies showed that ethanol was produced by an unknown alcohol dehydrogenase(s) that converted the acetaldehyde produced by SeEutE to ethanol. Allyl alcohol was used to select for mutants with reduced alcohol dehydrogenase activity. Three allyl alcohol-resistant mutants were isolated and all produced more acetaldehyde and less ethanol than ZH88. It was also found that modifying the growth medium by adding 1 g/L yeast extract and lowering the pH to 6.0 further increased the co-production of acetaldehyde and hydrogen. Under optimal conditions, strain ZH136 converted glucose to acetaldehyde and hydrogen in a 1:1 ratio with a specific acetaldehyde production rate of 0.68 y 0.20 g·h-1·g-1 dry cell weight, and in 86% of theoretical yield. This specific production rate is the highest reported thus far and is promising for industrial application. The possibility of a more efficient no-distill ethanol fermentation based on the co-production of acetaldehyde and hydrogen is discussed

    Challenges of scale down model for disposable bioreactors: Case studies on growth & product quality impacts

    Get PDF
    Despite wide-spread use of disposable bioreactors, there is a lack of well-established scale-down model for larger scale SUBs. Here we report a case of NS0 cell culture process transfer from 2000L stainless steel bioreactor (SST) to 2000L disposable bioreactor (SUB). Initial attempts in trying to grow the NS0 cells in the small scale 2D bags yielded non-satisfactory results, as growth was impacted by bag material type as well as by suppliers of the same bag material type. However, 3D bags of 50L and above proved to be supportive of the NS0 cell line growth. Even for cell lines that do not have growth issues in SUBs, surprising product quality difference between SUBs and traditional bench top glass bioreactors are still being observed, thus making the bench top glass bioreactors non-ideal as scale down models. We report two cases where glycan profiles of the expressed antibody products show such dramatic differences. In one case, extensive testing of glass bioreactors from various suppliers led to a particular type being able to mimic the glycan profiles from the SUB, whereas in the other case, alternative scale down model had to be identified and the process had to be modified to maintain the glycan profiles when scaling up to the 200L SUB

    Challenges of scale down model for disposable bioreactors: Case studies on growth & product quality impacts

    Get PDF
    Despite wide-spread use of disposable bioreactors, there is a lack of well-established scale-down model for larger scale SUBs. Here we report a case of NS0 cell culture process transfer from 2000L stainless steel bioreactor (SST) to 2000L disposable bioreactor (SUB). Initial attempts in trying to grow the NS0 cells in the small scale 2D bags yielded non-satisfactory results, as growth was impacted by bag material type as well as by suppliers of the same bag material type. However, 3D bags of 50L and above proved to be supportive of the NS0 cell line growth. Even for cell lines that do not have growth issues in SUBs, surprising product quality difference between SUBs and traditional bench top glass bioreactors are still being observed, thus making the bench top glass bioreactors non-ideal as scale down models. We report two cases where glycan profiles of the expressed antibody products show such dramatic differences. In one case, extensive testing of glass bioreactors from various suppliers led to a particular type being able to mimic the glycan profiles from the SUB, whereas in the other case, alternative scale down model had to be identified and the process had to be modified to maintain the glycan profiles when scaling up to the 200L SUB
    • …
    corecore