63 research outputs found

    Using Large Language Models for Commit Message Generation: A Preliminary Study

    Full text link
    A commit message is a textual description of the code changes in a commit, which is a key part of the Git version control system (VCS). It captures the essence of software updating. Therefore, it can help developers understand code evolution and facilitate efficient collaboration between developers. However, it is time-consuming and labor-intensive to write good and valuable commit messages. Some researchers have conducted extensive studies on the automatic generation of commit messages and proposed several methods for this purpose, such as generationbased and retrieval-based models. However, seldom studies explored whether large language models (LLMs) can be used to generate commit messages automatically and effectively. To this end, this paper designed and conducted a series of experiments to comprehensively evaluate the performance of popular open-source and closed-source LLMs, i.e., Llama 2 and ChatGPT, in commit message generation. The results indicate that considering the BLEU and Rouge-L metrics, LLMs surpass the existing methods in certain indicators but lag behind in others. After human evaluations, however, LLMs show a distinct advantage over all these existing methods. Especially, in 78% of the 366 samples, the commit messages generated by LLMs were evaluated by humans as the best. This work not only reveals the promising potential of using LLMs to generate commit messages, but also explores the limitations of commonly used metrics in evaluating the quality of auto-generated commit messages.Comment: The 31st IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER

    Affective Affordance of Message Balloon Animations: An Early Exploration of AniBalloons

    Full text link
    We introduce the preliminary exploration of AniBalloons, a novel form of chat balloon animations aimed at enriching nonverbal affective expression in text-based communications. AniBalloons were designed using extracted motion patterns from affective animations and mapped to six commonly communicated emotions. An evaluation study with 40 participants assessed their effectiveness in conveying intended emotions and their perceived emotional properties. The results showed that 80% of the animations effectively conveyed the intended emotions. AniBalloons covered a broad range of emotional parameters, comparable to frequently used emojis, offering potential for a wide array of affective expressions in daily communication. The findings suggest AniBalloons' promise for enhancing emotional expressiveness in text-based communication and provide early insights for future affective design.Comment: Accepted by CSCW 2023 poste

    Metal-free photo-induced sulfidation of aryl iodide and other chalcogenation

    Get PDF
    A photo-induced C-S radical cross-coupling of aryl iodides and disulfides under transition-metal and external photosensitizer free conditions for the synthesis of aryl sulfides at room temperature has been presented, which features mild reaction conditions, broad substrate scope, high efficiency, and good functional group compatibility. The developed methodology could be readily applied to forge C-S bond in the field of pharmaceutical and material science

    Effects of Mowing on Methane Uptake in a Semiarid Grassland in Northern China

    Get PDF
    Background: Mowing is a widely adopted management practice for the semiarid steppe in China and affects CH4 exchange. However, the magnitude and the underlying mechanisms for CH 4 uptake in response to mowing remain uncertain. Methodology/Principal Findings: In two consecutive growing seasons, we measured the effect of mowing on CH 4 uptake in a steppe community. Vegetation was mowed to 2 cm (M2), 5 cm (M5), 10 cm (M10), 15 cm (M15) above soil surface, respectively, and control was set as non-mowing (NM). Compared with control, CH4 uptake was substantially enhanced at almost all the mowing treatments except for M15 plots of 2009. CH4 uptake was significantly correlated with soil microbial biomass carbon, microbial biomass nitrogen, and soil moisture. Mowing affects CH 4 uptake primarily through its effect on some biotic factors, such as net primary productivity, soil microbial C\N supply and soil microbial activities, while soil temperature and moisture were less important. Conclusions/Significance: This study found that mowing affects the fluxes of CH4 in the semiarid temperate steppe of north China

    High Mechanical Property and Texture Degree of Hot-Extruded Bi<sub>0.905</sub>Sb<sub>0.095</sub>

    No full text
    Bi1−xSbx crystal is one of the best n-type thermoelectric materials below 200 K, but its weak mechanical strength hinders practical applications for deep refrigeration. Herein, we adopted the mechanical enhancement method of hot extrusion to investigate the comprehensive mechanical and thermoelectric properties of Bi0.905Sb0.095. It revealed that reducing the grain size of the matrix and increasing the extrusion ratio can improve the gain size uniformity and mechanical properties. Meanwhile, the thermoelectric performance depends on the texture, grain size, and local composition. The extruded sample prepared by ingot with the high extrusion ratio of 9:1 generated uniform small grains, which resulted in the high bending strength of Bi1−xSbx~130 Mpa and a high power factor of ~68 μW·cm−1·K−2@173 K, as well as the relatively high figure of merit of 0.25@173K. This work highlights the importance of the uniform distribution of the grain size and the compositions for Bi1−xSbx, as well as the required universal key parameter for the hot extrusion method

    Effects of Mowing Frequency on Soil Nematode Diversity and Community Structure in a Chinese Meadow Steppe

    No full text
    Soil nematodes are one of the most important components in terrestrial ecosystems and the critical factor driving the belowground process. The grasslands of Northeast China have been subject to mowing for ages, which theoretically should have had substantial effects on the processes associated with soil nematodes. However, relevant studies have barely been conducted to date. This study examined variations in soil nematode abundance, biomass, diversity, and community structure, with respect to varying mowing frequencies. The results showed that a higher mowing frequency significantly reduced the abundance of soil nematodes, biomass, diversity, and community structure stability in the ecosystem, while intermediate mowing frequency enhanced these parameters to different extents. Our findings indicate that the changing patterns of the nematode indices with mowing frequency conform to the intermediate disturbance theory. This study provides a theoretical basis for formulating grassland-related management measures and maintaining the stability of grassland ecosystems

    Effects of Mowing Frequency on Soil Nematode Diversity and Community Structure in a Chinese Meadow Steppe

    No full text
    Soil nematodes are one of the most important components in terrestrial ecosystems and the critical factor driving the belowground process. The grasslands of Northeast China have been subject to mowing for ages, which theoretically should have had substantial effects on the processes associated with soil nematodes. However, relevant studies have barely been conducted to date. This study examined variations in soil nematode abundance, biomass, diversity, and community structure, with respect to varying mowing frequencies. The results showed that a higher mowing frequency significantly reduced the abundance of soil nematodes, biomass, diversity, and community structure stability in the ecosystem, while intermediate mowing frequency enhanced these parameters to different extents. Our findings indicate that the changing patterns of the nematode indices with mowing frequency conform to the intermediate disturbance theory. This study provides a theoretical basis for formulating grassland-related management measures and maintaining the stability of grassland ecosystems

    Enhanced Thermoelectric Properties of Nb-Doped Ti(FeCoNi)Sb Pseudo-Ternary Half-Heusler Alloys Prepared Using the Microwave Method

    No full text
    Pseudo-ternary half-Heusler thermoelectric materials, which are formed by filling the B sites of traditional ternary half-Heusler thermoelectric materials of ABX with equal atomic proportions of various elements, have attracted more and more attention due to their lower intrinsic lattice thermal conductivity. High-purity and relatively dense Ti1−xNbx(FeCoNi)Sb (x = 0, 0.01, 0.03, 0.05, 0.07 and 0.1) alloys were prepared via microwave synthesis combined with rapid hot-pressing sintering, and their thermoelectric properties are investigated in this work. The Seebeck coefficient was markedly increased via Nb substitution at Ti sites, which resulted in the optimized power factor of 1.45 μWcm−1K−2 for n-type Ti0.93Nb0.07(FeCoNi)Sb at 750 K. In addition, the lattice thermal conductivity was largely decreased due to the increase in phonon scattering caused by point defects, mass fluctuation and strain fluctuation introduced by Nb-doping. At 750 K, the lattice thermal conductivity of Ti0.97Nb0.03(FeCoNi)Sb is 2.37 Wm−1K−1, which is 55% and 23% lower than that of TiCoSb and Ti(FeCoNi)Sb, respectively. Compared with TiCoSb, the ZT of the Ti1−xNbx(FeCoNi)Sb samples were significantly increased. The average ZT values of the Nb-doped pseudo-ternary half-Heusler samples were dozens of times that of the TiCoSb prepared using the same process

    Retrograde metamorphism of the eclogite in North Qaidam, western China: Constraints by joint 40Ar/39Ar in vacuo crushing and stepped heating

    Get PDF
    Two amphiboles and a syn-metamorphic quartz vein from the Yuka terrane, North Qaidam, western China, have been analyzed by joint 40Ar/39Ar crushing in vacuo and stepwise heating techniques. The crushing in vacuo results provide information to directly constrain the timing of fluid activity and the age of amphibolite-facies retrogression. The stepwise heating results could further be used to decipher the thermal history of the UHP rocks. Amphiboles from amphibolites and quartz vein within garnet-amphibolite lens analyzed by in vacuo crushing yield similarly shaped age spectra and exhibit relatively flat age plateaus for the last several steps. The characteristics of gas release patterns and geochronological data testify to the presence of significant excess 40Ar within the fluid inclusions. The age plateaux with weighted mean ages (WMA) ranges from 488 to 476 Ma for amphiboles and 403 Ma for quartz (2σ). These data points constitute amphibole WMA yielding excellent isochrons with isochron ages of 469 and 463 Ma with initial 40Ar/36Ar ratios of 520 and 334, respectively. The isochron ages are interpreted to represent initial amphibolite-facies retrogression. The data points constituting the quartz age plateaux give an isochron age of 405 Ma with initial 40Ar/36Ar ratio of 295, recording a significant aqueous fluid flow episode during the early Devonian. Age spectra obtained by stepwise heating of amphibole residues remaining after crushing experiments are characterized by younger and relatively complex age spectra, which are probably influenced by the combined effects of resetting argon and/or mineral inclusions. Nevertheless, we note that the spectra shapes have features in common: excluding the last two steps, minimum apparent ages are found at temperatures of around 500 °C, corresponding to 319 and 249 Ma, perhaps representing the time of isotopic resetting or resulting from release gas from mineral inclusions of, e.g., biotite or feldspar. Maximum apparent ages are obtained at temperatures of around 800 °C, corresponding to 418 and 413 Ma, which probably reflect mixed ages of radiogenic resetting and original amphibole. These results indicate that the Yuka eclogites and their retrogressed equivalents were overprinted by multiple thermal events in the Silurian and possibly as young as the Triassic
    • …
    corecore