140 research outputs found
AutoAssign+: Automatic Shared Embedding Assignment in Streaming Recommendation
In the domain of streaming recommender systems, conventional methods for
addressing new user IDs or item IDs typically involve assigning initial ID
embeddings randomly. However, this practice results in two practical
challenges: (i) Items or users with limited interactive data may yield
suboptimal prediction performance. (ii) Embedding new IDs or low-frequency IDs
necessitates consistently expanding the embedding table, leading to unnecessary
memory consumption. In light of these concerns, we introduce a reinforcement
learning-driven framework, namely AutoAssign+, that facilitates Automatic
Shared Embedding Assignment Plus. To be specific, AutoAssign+ utilizes an
Identity Agent as an actor network, which plays a dual role: (i) Representing
low-frequency IDs field-wise with a small set of shared embeddings to enhance
the embedding initialization, and (ii) Dynamically determining which ID
features should be retained or eliminated in the embedding table. The policy of
the agent is optimized with the guidance of a critic network. To evaluate the
effectiveness of our approach, we perform extensive experiments on three
commonly used benchmark datasets. Our experiment results demonstrate that
AutoAssign+ is capable of significantly enhancing recommendation performance by
mitigating the cold-start problem. Furthermore, our framework yields a
reduction in memory usage of approximately 20-30%, verifying its practical
effectiveness and efficiency for streaming recommender systems
Differential microRNA expression between shoots and rhizomes in Oryza longistaminata using high-throughput RNA sequencing
AbstractPlant microRNAs (miRNAs) play important roles in biological processes such as development and stress responses. Although the diverse functions of miRNAs in model organisms have been well studied, their function in wild rice is poorly understood. In this study, high-throughput small RNA sequencing was performed to characterize tissue-specific transcriptomes in Oryza longistaminata. A total of 603 miRNAs, 380 known rice miRNAs, 72 conserved plant miRNAs, and 151 predicted novel miRNAs were identified as being expressed in aerial shoots and rhizomes. Additionally, 99 and 79 miRNAs were expressed exclusively or differentially, respectively, in the two tissues, and 144 potential targets were predicted for the differentially expressed miRNAs in the rhizomes. Functional annotation of these targets suggested that transcription factors, including squamosa promoter binding proteins and auxin response factors, function in rhizome growth and development. The expression levels of several miRNAs and target genes in the rhizomes were quantified by RT-PCR, and the results indicated the existence of complex regulatory mechanisms between the miRNAs and their targets. Eight target cleavage sites were verified by RNA ligase-mediated rapid 5′ end amplification. These results provide valuable information on the composition, expression and function of miRNAs in O. longistaminata, and will aid in understanding the molecular mechanisms of rhizome development
Identification of rhizome-specific genes by genome-wide differential expression Analysis in Oryza longistaminata
<p>Abstract</p> <p>Background</p> <p>Rhizomatousness is a key component of perenniality of many grasses that contribute to competitiveness and invasiveness of many noxious grass weeds, but can potentially be used to develop perennial cereal crops for sustainable farmers in hilly areas of tropical Asia. <it>Oryza longistaminata</it>, a perennial wild rice with strong rhizomes, has been used as the model species for genetic and molecular dissection of rhizome development and in breeding efforts to transfer rhizome-related traits into annual rice species. In this study, an effort was taken to get insights into the genes and molecular mechanisms underlying the rhizomatous trait in <it>O. longistaminata </it>by comparative analysis of the genome-wide tissue-specific gene expression patterns of five different tissues of <it>O. longistaminata </it>using the Affymetrix GeneChip Rice Genome Array.</p> <p>Results</p> <p>A total of 2,566 tissue-specific genes were identified in five different tissues of <it>O. longistaminata</it>, including 58 and 61 unique genes that were specifically expressed in the rhizome tips (RT) and internodes (RI), respectively. In addition, 162 genes were up-regulated and 261 genes were down-regulated in RT compared to the shoot tips. Six distinct <it>cis</it>-regulatory elements (CGACG, GCCGCC, GAGAC, AACGG, CATGCA, and TAAAG) were found to be significantly more abundant in the promoter regions of genes differentially expressed in RT than in the promoter regions of genes uniformly expressed in all other tissues. Many of the RT and/or RI specifically or differentially expressed genes were located in the QTL regions associated with rhizome expression, rhizome abundance and rhizome growth-related traits in <it>O. longistaminata </it>and thus are good candidate genes for these QTLs.</p> <p>Conclusion</p> <p>The initiation and development of the rhizomatous trait in <it>O. longistaminata </it>are controlled by very complex gene networks involving several plant hormones and regulatory genes, different members of gene families showing tissue specificity and their regulated pathways. Auxin/IAA appears to act as a negative regulator in rhizome development, while GA acts as the activator in rhizome development. Co-localization of the genes specifically expressed in rhizome tips and rhizome internodes with the QTLs for rhizome traits identified a large set of candidate genes for rhizome initiation and development in rice for further confirmation.</p
Manipulating rhizosphere microorganisms to improve crop yield in saline-alkali soil: a study on soybean growth and development
IntroductionRhizosphere microorganisms can effectively promote the stress resistance of plants, and some beneficial rhizosphere microorganisms can significantly promote the growth of crops under salt stress, which has the potential to develop special microbial fertilizers for increasing the yield of saline-alkali land and provides a low-cost and environmentally friendly new strategy for improving the crop yield of saline-alkali cultivated land by using agricultural microbial technology.MethodsIn May 2022, a field study in a completely randomized block design was conducted at the Heilongjiang Academy of Agricultural Sciences to explore the correlation between plant rhizosphere microorganisms and soybean growth in saline-alkali soil. Two soybean cultivars (Hening 531, a salt-tolerant variety, and 20_1846, a salt-sensitive variety) were planted at two experimental sites [Daqing (normal condition) and Harbin (saline-alkali conditions)], aiming to investigate the performance of soybean in saline-alkali environments.ResultsSoybeans grown in saline-alkali soil showed substantial reductions in key traits: plant height (25%), pod number (26.6%), seed yield (33%), and 100 seed weight (13%). This underscores the unsuitability of this soil type for soybean cultivation. Additionally, microbial analysis revealed 43 depleted and 56 enriched operational taxonomic units (OTUs) in the saline-alkali soil compared to normal soil. Furthermore, an analysis of ion-associated microbes identified 85 mOTUs with significant correlations with various ions. A co-occurrence network analysis revealed strong relationships between specific mOTUs and ions, such as Proteobacteria with multiple ions. In addition, the study investigated the differences in rhizosphere species between salt-tolerant and salt-sensitive soybean varieties under saline-alkali soil conditions. Redundancy analysis (RDA) indicated that mOTUs in saline-alkali soil were associated with pH and ions, while mOTUs in normal soil were correlated with Ca2+ and K+. Comparative analyses identified significant differences in mOTUs between salt-tolerant and salt-sensitive varieties under both saline-alkali and normal soil conditions. Planctomycetes, Proteobacteria, and Actinobacteria were dominant in the bacterial community of saline-alkali soil, with significant enrichment compared to normal soil. The study explored the functioning of the soybean rhizosphere key microbiome by comparing metagenomic data to four databases related to the carbon, nitrogen, phosphorus, and sulfur cycles. A total of 141 KOs (KEGG orthologues) were identified, with 66 KOs related to the carbon cycle, 16 KOs related to the nitrogen cycle, 48 KOs associated with the phosphorus cycle, and 11 KOs linked to the sulfur cycle. Significant correlations were found between specific mOTUs, functional genes, and phenotypic traits, including per mu yield (PMY), grain weight, and effective pod number per plant.ConclusionOverall, this study provides comprehensive insights into the structure, function, and salt-related species of soil microorganisms in saline-alkali soil and their associations with salt tolerance and soybean phenotype. The identification of key microbial species and functional categories offers valuable information for understanding the mechanisms underlying plant-microbe interactions in challenging soil conditions
Potential of Core-Collapse Supernova Neutrino Detection at JUNO
JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve
Detection of the Diffuse Supernova Neutrino Background with JUNO
As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
Research on Anthocyanins from <em>Rubus</em> “Shuofeng” as Potential Antiproliferative and Apoptosis-Inducing Agents
Blackberries have high nutritional value and strong biological activities, such as antiproliferative activity. Anthocyanins are important functional components in blackberries. We collected 25 kinds (lines) of blackberries from our nursery to investigate antiproliferative agents in natural foods. Among them, the Shuofeng variety had the highest anthocyanin content, with 2.54 mg/g of fresh fruit, which increased to 357.75 mg/g of dried powder through ultrasound-assisted solvent extraction and macroporous resin adsorption. Additional experiments showed that Shuofeng’s anthocyanin content had high anti-HepG2 activity in vitro and in vivo, as well as activity against Hela (68.62 μg/mL), HepG2 (55.85 μg/mL), MCF-7 (181.21 μg/mL), and A549 cells (82.01 μg/mL), as determined by MTT assay. It also had no apparent toxic effects. The combination of DDP and DOX significantly enhanced the antiproliferative activity of the four cell lines. The IC50 value of Shuofeng’s anthocyanin content combined with DOX in HepG2 cells was the lowest at only 0.08 μg/mL, indicating that the combination of drugs had additive and synergistic effects. Shuofeng’s anthocyanin content might intercalate into DNA and alter or destroy DNA, causing apoptosis and inhibiting cell proliferation. Our results show that blackberry anthocyanins can inhibit the proliferation of cancer cells and their possible mechanisms. However, we must study the deeper mechanism and explore its targeting effects in the future
- …