5,767 research outputs found
Holographic Dark Energy Scenario and Variable Modified Chaplygin Gas
In this letter, we have considered that the universe is filled with normal
matter and variable modified Chaplygin gas. Also we have considered the
interaction between normal matter and variable modified Chaplygin gas in FRW
universe. Then we have considered a correspondence between the holographic dark
energy density and interacting variable modified Chaplygin gas energy density.
Then we have reconstructed the potential of the scalar field which describes
the variable modified Chaplygin cosmology.Comment: 4 latex pages, no figures, RevTeX styl
Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings
We demonstrate the capacity for fast dynamic reconfiguration of optical code-division multiple access (OCDMA) phase en/decoders based on fiber Bragg gratings and a thermal phase-tuning technique. The tuning time between two different phase codes is measured to be less than 2 s. An OCDMA system using tunable-phase decoders is compared with a system using fixed-phase decoders and, although the system using fixed-phase decoders exhibits a shorter output autocorrelation pulsewidth and lower sidelobes, the system using tunable-phase decoders has advantages of flexibility and a more relaxed requirement on the input pulsewidth
Interacting new agegraphic Phantom model of dark energy in non-flat universe
In this paper we consider the new agegraphic model of interacting dark energy
in non-flat universe. We show that the interacting agegraphic dark energy can
be described by a phantom scalar field. Then we show this phantomic description
of the agegraphic dark energy and reconstruct the potential of the phantom
scalar field.Comment: 8 pages, no figur
Dimension- and shape-dependent thermal transport in nano-patterned thin films investigated by scanning thermal microscopy
Scanning thermal microscopy (SThM) is a technique which is often used for the measurement of the thermal conductivity of materials at the nanometre scale. The impact of nano-scale feature size and shape on apparent thermal conductivity, as measured using SThM, has been investigated. To achieve this, our recently developed topography-free samples with 200 and 400 nm wide gold wires (50 nm thick) of length of 400–2500 nm were fabricated and their thermal resistance measured and analysed. This data was used in the development and validation of a rigorous but simple heat transfer model that describes a nanoscopic contact to an object with finite shape and size. This model, in combination with a recently proposed thermal resistance network, was then used to calculate the SThM probe signal obtained by measuring these features. These calculated values closely matched the experimental results obtained from the topography-free sample. By using the model to analyse the dimensional dependence of thermal resistance, we demonstrate that feature size and shape has a significant impact on measured thermal properties that can result in a misinterpretation of material thermal conductivity. In the case of a gold nanowire embedded within a silicon nitride matrix it is found that the apparent thermal conductivity of the wire appears to be depressed by a factor of twenty from the true value. These results clearly demonstrate the importance of knowing both probe-sample thermal interactions and feature dimensions as well as shape when using SThM to quantify material thermal properties. Finally, the new model is used to identify the heat flux sensitivity, as well as the effective contact size of the conventional SThM system used in this study
Coupling to haloform molecules in intercalated C60?
For field-effect-doped fullerenes it was reported that the superconducting
transition temperature Tc is markedly larger for C60.2CHX_3 (X=Cl, Br)
crystals, than for pure C60. Initially this was explained by the expansion of
the volume per C60-molecule and the corresponding increase in the density of
states at the Fermi level in the intercalated crystals. On closer examination
it has, however, turned out to be unlikely that this is the mechanism behind
the increase in Tc. An alternative explanation of the enhanced transition
temperatures assumes that the conduction electrons not only couple to the
vibrational modes of the C60-molecule, but also to the modes of the
intercalated molecules. We investigate the possibility of such a coupling. We
find that, assuming the ideal bulk structure of the intercalated crystal, both
a coupling due to hybridization of the molecular levels, and a coupling via
dipole moments should be very small. This suggests that the presence of the
gate-oxide in the field-effect-devices strongly affects the structure of the
fullerene crystal at the interface.Comment: 4 pages, 1 figure, to be published in PRB (rapid communication
Tunnelling through black rings
Hawking radiation of black ring solutions to 5-dimensional
Einstein-Maxwell-dilaton gravity theory is analyzed by use of the
Parikh-Wilczek tunnelling method. To get the correct tunnelling amplitude and
emission rate, we adopted and developed the Angheben-Nadalini-Vanzo-Zerbini
covariant approach to cover the effects of rotation and electronic discharge
all at once, and the effect of back reaction is also taken into account. This
constitute a unified approach to the tunnelling problem. Provided the first law
of thermodynamics for black rings holds, the emission rate is proportional to
the exponential of the change of Bekenstein-Hawking entropy. Explicit
calculation for black ring temperatures agree exactly with the results obtained
via the classical surface gravity method and the quasilocal formalism.Comment: 10 pages, V2: various modifications throughout the text, plus a lot
of newly added reference
Statefinder diagnostic and stability of modified gravity consistent with holographic and new agegraphic dark energy
Recently one of us derived the action of modified gravity consistent with the
holographic and new-agegraphic dark energy. In this paper, we investigate the
stability of the Lagrangians of the modified gravity as discussed in [M. R.
Setare, Int. J. Mod. Phys. D 17 (2008) 2219; M. R. Setare, Astrophys. Space
Sci. 326 (2010) 27]. We also calculate the statefinder parameters which
classify our dark energy model.Comment: 12 pages, 2 figures, accepted by Gen. Relativ. Gravi
Interacting Ricci Dark Energy with Logarithmic Correction
Motivated by the holographic principle, it has been suggested that the dark
energy density may be inversely proportional to the area of the event
horizon of the universe. However, such a model would have a causality problem.
In this work, we consider the entropy-corrected version of the holographic dark
energy model in the non-flat FRW universe and we propose to replace the future
event horizon area with the inverse of the Ricci scalar curvature. We obtain
the equation of state (EoS) parameter , the deceleration
parameter and in the presence of interaction between Dark
Energy (DE) and Dark Matter (DM). Moreover, we reconstruct the potential and
the dynamics of the tachyon, K-essence, dilaton and quintessence scalar field
models according to the evolutionary behavior of the interacting
entropy-corrected holographic dark energy model.Comment: 24 pages, accepted for publication in 'Astrophysics and Space
Science, DOI:10.1007/s10509-012-1031-8
Interacting new agegraphic viscous dark energy with varying
We consider the new agegraphic model of dark energy with a varying
gravitational constant, , in a non-flat universe. We obtain the equation of
state and the deceleration parameters for both interacting and noninteracting
new agegraphic dark energy. We also present the equation of motion determining
the evolution behavior of the dark energy density with a time variable
gravitational constant. Finally, we generalize our study to the case of viscous
new agegraphic dark energy in the presence of an interaction term between both
dark components.Comment: 12 pages, accepted for publication in IJTP (2010
Holographic dark energy with time varying parameter
We consider the holographic dark energy model in which the model parameter
evolves slowly with time. First we calculate the evolution of EoS
parameter as well as the deceleration parameter in this generalized version of
holographic dark energy (GHDE). Depending on the parameter , the phantom
regime can be achieved earlier or later compare with original version of
holographic dark energy. The evolution of energy density of GHDE model is
investigated in terms of parameter . We also show that the time-dependency
of can effect on the transition epoch from decelerated phase to
accelerated expansion. Finally, we perform the statefinder diagnostic for GHDE
model and show that the evolutionary trajectories of the model in plane
are strongly depend on the parameter .Comment: 16 pages, 4 figures, accepted by Astrophys Space Sc
- …
