1,696 research outputs found

    The testosterone mimetic properties of icariin,”

    Get PDF
    Abstract Aim: To evaluate the testosterone mimetic properties of icariin. Methods: Forty-eight healthy male Sprague-Dawley rats at the age of 15 months were randomly divided into four groups with 12 rats each: the control group (C), the model group (M), the icariin group (ICA) and the testosterone group (T). The reproductive system was damaged by cyclophosphamide (intraperitoneal injection, 20 mg/kg·day) for 5 consecutive days for groups M, ICA and T, at the sixth day, ICA (gastric gavage, 200 mg/kg·day) for the ICA group and sterandryl (subcutaneous injection, 5 mg/rat·day) for the T group for 7 consecutive days, respectively. The levels of serum testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH), serum bone Gla-protein (BGP) and tartrate-resistant acid phosphatase activity in serum (StrACP) were determined. The histological changes of the testis and the penis were observed by microscope with hematoxylin-eosin (HE) staining and terminal deoxynucleotidyl transferase biotin-dUTP-X nick end labeling (TUNEL), respectively. Results: (1) Icariin improved the condition of reproductive organs and increased the circulating levels of testosterone

    Probing nuclear symmetry energy at high densities using pion, kaon, eta and photon productions in heavy-ion collisions

    Full text link
    The high-density behavior of nuclear symmetry energy is among the most uncertain properties of dense neutron-rich matter. Its accurate determination has significant ramifications in understanding not only the reaction dynamics of heavy-ion reactions especially those induced by radioactive beams but also many interesting phenomena in astrophysics, such as the explosion mechanism of supernova and the properties of neutron stars. The heavy-ion physics community has devoted much effort during the last few years to constrain the high-density symmetry using various probes. In particular, the pion-/pion+ ratio has been most extensively studied both theoretically and experimentally. All models have consistently predicted qualitatively that the pion-/pion+ ratio is a sensitive probe of the high-density symmetry energy especially with beam energies near the pion production threshold. However, the predicted values of the pion-/pion+ ratio are still quite model dependent mostly because of the complexity of modeling pion production and reabsorption dynamics in heavy-ion collisions, leading to currently still controversial conclusions regarding the high-density behavior of nuclear symmetry energy from comparing various model calculations with available experimental data. As more pion-/pion+ data become available and a deeper understanding about the pion dynamics in heavy-ion reactions is obtained, more penetrating probes, such as the kaon+/kaon0 ratio, eta meson and high energy photons are also being investigated or planned at several facilities. Here, we review some of our recent contributions to the community effort of constraining the high-density behavior of nuclear symmetry energy in heavy-ion collisions. In addition, the status of some worldwide experiments for studying the high-density symmetry energy, including the HIRFL-CSR external target experiment (CEE) are briefly introduced.Comment: 10 pages, 10 figures, Contribution to the Topical Issue on Nuclear Symmetry Energy in EPJA Special Volum

    FSD-C10, a Fasudil derivative, promotes neuroregeneration through indirect and direct mechanisms.

    Get PDF
    FSD-C10, a Fasudil derivative, was shown to reduce severity of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), through the modulation of the immune response and induction of neuroprotective molecules in the central nervous system (CNS). However, whether FSD-C10 can promote neuroregeneration remains unknown. In this study, we further analyzed the effect of FSD-C10 on neuroprotection and remyelination. FSD-C10-treated mice showed a longer, thicker and more intense MAP2 and synaptophysin positive signal in the CNS, with significantly fewer CD4(+) T cells, macrophages and microglia. Importantly, the CNS of FSD-C10-treated mice showed a shift of activated macrophages/microglia from the type 1 to type 2 status, elevated numbers of oligodendrocyte precursor cells (OPCs) and oligodendrocytes, and increased levels of neurotrophic factors NT-3, GDNF and BDNF. FSD-C10-treated microglia significantly inhibited Th1/Th17 cell differentiation and increased the number of IL-10(+) CD4(+) T cells, and the conditioned medium from FSD-C10-treated microglia promoted OPC survival and oligodendrocyte maturation. Addition of FSD-C10 directly promoted remyelination in a chemical-induced demyelination model on organotypic slice culture, in a BDNF-dependent manner. Together, these findings demonstrate that FSD-C10 promotes neural repair through mechanisms that involved both immunomodulation and induction of neurotrophic factors

    Thrusting and exhumation of the southern Mongolian Plateau: Joint thermochronological constraints from the Langshan Mountains, western Inner Mongolia, China

    Get PDF
    The Mongolian Plateau has undergone multi-stage denudation since the Late Triassic, and the NE-trending Langshan Mountains in the southern margin of the Mongolian Plateau is crucial to unraveling the Meso-Cenozoic cooling and exhumation history of the Mongolian Plateau. The Langshan Mountains are dominated by Precambrian gneiss and Permian–Middle Triassic granitic plutons crosscut by a set of NE-striking thrust faults. A joint thermochronological study was conducted on 31 granitic and gneissic samples along the HQ and CU transects across the Langshan Mountains and other two samples from the BQ in the north of the Langshan Mountains. Four biotite/muscovite and three K-feldspar 40Ar/39Ar plateau ages range from 205 ± 1 to 161 ± 1 and 167 ± 1 to 131 ± 1 Ma, respectively. Thirty-three apatite fission track (AFT) ages are between 184 ± 11 and 79 ± 4 Ma, with mean track lengths from 11.1 ± 1.8 to 13.1 ± 1.4 ÎŒm of mostly unimodal distributions. Thirty-one single-grain raw AHe ages are in a range of 134 ± 8 to 21 ± 1 Ma. The AFT ages decrease monotonously from NW to SE until thrust faults along the two transects, with an age-jump across thrust F35. Joint thermal history modelling shows a three-stage cooling history as a result of denudation, especially with spatial differentiation in the first stage. Relative slow cooling at c. 0.6–1.0 °C/Ma occurred in the BQ and the northern part of the HQ transect during 220–100 Ma and the northern part of the CU transect during 160–100 Ma, respectively, with an amount of c. 2–3 km denudation between 160 and 100 Ma, implying little movement along the thrusts F13 and F33. In the middle and southern parts of the HQ transect and the southern part of the CU transect, rapid cooling at c. 4.0–7.0 °C/Ma, with c. 6–9 km denudation during 170–130 or 160–100 Ma, respectively, is probably influenced by thrusting of F35, F38 and F42 and the resultant tilting. A combination of thrusting, tilting, and denudation led to the youngering trends towards thrusts in different parts. However, there was no significant denudation across the Langshan Mountains in the second stage from c. 100 or 80 Ma until the last stage of rapid denudation (c. 2 km) since 20–10 Ma, which is simultaneous with the rapid uplift of the northern part of the Tibetan Plateau at c. 15 Ma. A youngering trend of AFT ages from the inner to the peripherals of the Mongolian Plateau implies the outward propagation of the Mongolian Plateau since the Mesozoic

    Analysis of morphological differences in five large yellow croaker (<em>Larimichthys crocea</em>) populations

    Get PDF
    To explore the morphological and phenotypic characteristics and differences among different populations of Larimichthys crocea, traditional morphological measurements were carried out on three wild populations from Zhoushan, Xiamen and Zhanjiang and two farmed populations from Ningde and Wenzhou. Seven morphological parameters of five L. crocea populations were compared and analyzed. The results of one-way ANOVA showed significant differences in trunk and caudal stalk among the five populations. The contribution rates of the first five principal components to the total difference among different populations were 29.984%, 18.462%, 17.234%, 12.167%, and 9.904%, respectively, and the cumulative contribution rates were 87.751%. Trunk can be used to distinguish different geographic populations best. The cluster analysis results showed that the distance between wild populations was the closest, while the distance between farmed populations was far. The step discriminant method established the classification discriminant function of 5 populations. The discriminant accuracy P1 was 78.3%-92.7%, the discriminant accuracy P2 was 76.4%-96.5%, and the comprehensive recognition rate was 99.3%. The discriminant accuracy of this method was high, and it could provide a reference for the differentiation of different populations of L. crocea. This study provided basic morphological data for identifying a large yellow croaker population, protecting germplasm resources, and breeding improved varieties
    • 

    corecore